In recent decades, large amounts of construction and demolition waste (CDW) have been generated and accumulated throughout Europe, which is a challenge to manage and control nowadays. This work shows the results of a study carried out with samples of ceramic recycled aggregates (CRAs) and recycled concrete aggregates (RCAs) mixed with cement (C) in mortars. The main objective of this research is to demonstrate how, by adding CRAs and RCAs to a mixture of cement and natural aggregate (NA), it is possible to develop a high-strength mortar and achieve the best mixing ratio. To achieve these objectives, the characterization of the samples was initially carried out such as XRF, XRD and SEM. Next, tests were carried out on the products obtained, such as the consistency of the fresh mortar and the density of the specimens. Finally, a study of mechanical compressive strength was performed at 7, 28 and 200 days. The results show that although both CRAs and RCAs negatively affect the curing process of the specimens, it is possible to develop mortars with compressive strengths greater than 20 MPa. An obvious increase in mechanical compressive strengths was seen between 7 and 200 days of analysis. The results achieved in this research could be an important guide for the management of CDWs by local industries, thus favouring the development of the circular economy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780879PMC
http://dx.doi.org/10.3390/ma15248933DOI Listing

Publication Analysis

Top Keywords

recycled aggregates
8
study mechanical
8
cras rcas
8
mechanical compressive
8
200 days
8
compressive strengths
8
aggregates ceramic
4
ceramic concrete
4
concrete mortar
4
mortar mixes
4

Similar Publications

Harmless and efficient nickel enrichment from nickel-containing waste slag using vitrification technology.

Environ Sci Pollut Res Int

January 2025

Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.

With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).

View Article and Find Full Text PDF

Unlocking hexafluoroisopropanol as a practical anion-binding catalyst for living cationic polymerization.

Angew Chem Int Ed Engl

January 2025

Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.

Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.

View Article and Find Full Text PDF

Heterodimeric Photosensitizer as Radical Generators to Promoting Type I Photodynamic Conversion for Hypoxic Tumor Therapy.

Adv Mater

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China.

Photodynamic therapy (PDT) using traditional type II photosensitizers (PSs) has been limited in hypoxic tumors due to excessive oxygen consumption. The conversion from type II into a less oxygen-dependent type I PDT pathway has shown the potential to combat hypoxic tumors. Herein, the design of a heterodimeric PS, NBSSe, by conjugating a widely used type I PS NBS and a type II PS NBSe via molecular dimerization, achieving the aggregation-regulated efficient type I photodynamic conversion for the first time is reported.

View Article and Find Full Text PDF

Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.

View Article and Find Full Text PDF

The findings highlight the potential for broadening the use of shell aggregates in construction applications. This research investigated the viability of incorporating milled seashells as fine sand replacements for natural calcareous sand in the production of self-compacting mortar. These results highlight a promising avenue for coastal industries to reduce waste while enhancing the durability of construction materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!