Research on Current Drive System of Magnetorheological Damper Based on Fuzzy PI Control.

Materials (Basel)

Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.

Published: December 2022

Magnetorheological dampers (MRD) are increasingly used in smart structural damping systems due to their good damping properties. In practical applications, as a nonlinear device, the parameters of the internal excitation coil of the magnetorheological damper will change during operation under the influence of the temperature and external environment, deteriorating the dynamic performance of the output current of the driver and reducing the damping effect of the system. Therefore, the current driver needs to be optimized for this phenomenon in order to ensure accurate current output. In this paper, a mathematical model of the buck circuit combined with the MRD equivalent circuit is established, and after analyzing the model, the parameters of the PI controller are rectified to lay the foundation for the design of the adaptive law. Then, with the help of the fuzzy control method, a fuzzy PI control strategy for MRD current driver is established, which enables the current driving system to adjust the control parameters adaptively when the MRD parameters change and ensure the accurate driving current output. The experimental results demonstrate that the fuzzy PI control strategy has a stronger robustness in the face of parameter changes of the control object compared with the traditional PI control at a system parameter change rate of 40%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785227PMC
http://dx.doi.org/10.3390/ma15248893DOI Listing

Publication Analysis

Top Keywords

fuzzy control
16
current driver
12
magnetorheological damper
8
ensure accurate
8
current output
8
control strategy
8
current
7
control
7
current drive
4
system
4

Similar Publications

In this paper, explore the effectiveness of a new Wide Area Fuzzy Power System Stabilizer (WAFPSS), optimized using the Exponential Distribution Optimization (EDO) algorithm, and applied to an IEEE three-area, six-machine power system model. This research primarily focuses on assessing the stabilizer's capability to dampen inter-area oscillations, a critical challenge in power grid operations. Through extensive simulations, the study demonstrates how the WAFPSS enhances stability and reliability under a variety of operational conditions characterized by different communication delay patterns.

View Article and Find Full Text PDF

Combined action of dietary-based approaches and therapeutic agents on cholesterol metabolism and main related diseases.

Clin Nutr ESPEN

January 2025

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal. Electronic address:

Background: Dyslipidaemia is among the major causes of severe diseases and, despite being well-established, the hypocholesterolaemic therapies still face significant concerns about potential side effects (such as myopathy, myalgia, liver injury digestive problems, or mental fuzziness in some people taking statins), interaction with other drugs or specific foods. Accordingly, this review describes the latest developments in the most effective therapies to control and regulate dyslipidaemia.

Scope And Approach: Herein, the metabolic dynamics of cholesterol and their integration with the current therapies: statins, bile acid sequestrants, fibrates, niacin, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, reconstituted high-density lipoprotein (rHDL), or anti-inflammatory and immune-modulating therapies), were compared focusing their effectiveness, patients' adhesion and typical side-effects.

View Article and Find Full Text PDF

Design and experimental study of tillage depth control system for electric rotary tiller based on LADRC.

Sci Rep

January 2025

The Key Laboratory for Agricultural Machinery Intelligent Control and Manufacturing of Fujian Education Institutions, Wuyi University, Nanping, 354300, Fujian, China.

This paper proposes an adaptive real-time tillage depth control system for electric rotary tillers, based on Linear Active Disturbance Rejection Control (LADRC), to improve tillage depth accuracy in tea garden intercropping with soybeans. The tillage depth control system comprises a body posture sensor, a control unit, and a hybrid stepper motor, integrating sensor data to drive the motor and achieve precise depth control. Real-time displacement sensor signals are compared with target values, enabling closed-loop control of the rotary tiller.

View Article and Find Full Text PDF

Agriculture is an essential component of human sustenance in this world. These days, with a growing population, we must significantly increase agricultural productivity to meet demand. Agriculture moved toward technologies as a result of the demand for higher yields with less resources.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses a new control algorithm for robotic manipulators that addresses issues like complex structures and uncertainties.
  • It utilizes fuzzy set theory to tackle system uncertainties and ensures the system's performance remains stable (uniform boundedness and uniform ultimate boundedness).
  • The proposed method has been validated through numerical simulations and experiments, demonstrating its effectiveness in optimizing controller settings.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!