Investigating the Potential Use of Date Kernel Ash (DKA) as a Partial Cement Replacement in Concrete.

Materials (Basel)

Department of Civil Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia.

Published: December 2022

The palm and date sector is one of the most important sectors in Saudi Arabia. The total number of fertile palm trees in Saudi Arabia is about 31 million. In the production of pitted dates, date molasses, date paste, and date confectionery, a considerable number of date kernels are usually discarded as waste. This study reports experimental investigations conducted to evaluate the potential of waste date kernel ash (DKA), obtained by the calcination of date pits at 800 °C, as a partial cement replacement in concrete. DKA has low silica oxide and does not qualify as a pozzolanic material. The effect of DKA partially replacing the cement and acting as a filler material in concrete was investigated, and its properties were compared with two pozzolanic materials, fly ash (FA) and natural pozzolan (NP). Twelve concrete mixes in which cement was replaced with different proportions of calcined DKA (5%, 10%, 15%, 20%, and 30%), NP (10%, 20%, and 30%), and FA (10%, 20%, and 30%) were investigated in the experimental program. The properties of DKA, FA, and NP concrete mixes were evaluated in fresh and hardened states, including the heat of hydration, mechanical characteristics, and thermal properties. The results show that replacing cement with 5% date kernel ash increases the compressive strength by 0.42%, 3.2%, and 2.5% at 3, 7, and 28 days, respectively, while the 28-day compressive strength decreases by 2.4%, 5.4%, 16.3%, and 26.69% when the cement is replaced with 10%, 15%, 20%, and 30% DKA, respectively. Date kernel ash concrete mixes with 10%, 20%, and 30% replacement levels demonstrated higher compressive and tensile strengths and lower thermal conductivity, density, and workability when compared to natural pozzolan and fly ash. DKA is a promising partial cement replacement material; nevertheless, additional research is required to assess the durability of DKA in concrete.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785901PMC
http://dx.doi.org/10.3390/ma15248866DOI Listing

Publication Analysis

Top Keywords

20% 30%
20
kernel ash
16
ash dka
12
partial cement
12
cement replacement
12
concrete mixes
12
10% 20%
12
dka
9
replacement concrete
8
saudi arabia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!