In this paper, a mold electromagnetic stirring (M-EMS) model was established to investigate the behavior of M-EMS for round bloom castings under different conditions, and an electromagnetic-flow-heat transfer-solidification coupling model was established to explore the problem of eccentric stirring for various formats of round blooms. The results show that the magnetic flux density decreased with the increase in the current frequency, but the electromagnetic torque increases first and then decreases with it, and the same structure of M-EMS for round blooms has the same optimal current frequency at any current intensity. The electromagnetic torque and electromagnetic force both increase as a quadratic function of the current intensity, and the electromagnetic torque, which drives the steel flow, can directly characterize the real M-EMS performance. The mold copper tube has a significant magnetic shielding effect on M-EMS, the stirring intensity decreases rapidly as the tube thickness increases, and the optimal stirring frequency decreases as well. In fact, the deviation between the stirrer center and the geometric center of the strand can result in the eccentric stirring phenomenon. When blooms with a section size of Φ350 mm are produced by Φ650 mm SMS-Concast casting machine, the upper region of the inner arc side and the lower region of the outer arc side are subject to a stronger washing effect, which makes the temperature of the inner and outer arcs show alternating differences. The jet flow from the five-port nozzle can suppress the difference in initial solidification symmetry between the inner and outer arcs of round blooms caused by eccentric stirring. This paper reveals the magnetic shielding effect of the mold copper tube and the magnetic field loss of the air between the stirrer and the inner and outer arcs of the copper, which lead to the stirring intensity and the eccentric stirring phenomenon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782592PMC
http://dx.doi.org/10.3390/ma15248814DOI Listing

Publication Analysis

Top Keywords

eccentric stirring
20
round blooms
12
electromagnetic torque
12
inner outer
12
outer arcs
12
stirring
10
mold electromagnetic
8
electromagnetic stirring
8
round bloom
8
bloom castings
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!