A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intrafamilial Phenotypical Variability Linked to PRKAG2 Mutation-Family Case Report and Review of the Literature. | LitMetric

PRKAG2 syndrome (PS) is a rare, early-onset autosomal dominant phenocopy of sarcomeric hypertrophic cardiomyopathy (HCM), that mainly presents with ventricular pre-excitation, cardiac hypertrophy and progressive conduction system degeneration. Its natural course, treatment and prognosis are significantly different from sarcomeric HCM. The clinical phenotypes of PRKAG2 syndrome often overlap with HCM due to sarcomere protein mutations, causing this condition to be frequently misdiagnosed. The syndrome is caused by mutations in the gene encoding for the γ2 regulatory subunit (PRKAG2) of 5′ Adenosine Monophosphate-Activated Protein Kinase (AMPK), an enzyme that modulates glucose uptake and glycolysis. PRKAG2 mutations (OMIM#602743) are responsible for structural changes of AMPK, leading to an impaired myocyte glucidic uptake, and finally causing storage cardiomyopathy. We describe the clinical and investigative findings in a family with several affected members (NM_016203.4:c.905G>A or p.(Arg302Gln), heterozygous), highlighting the various phenotypes even in the same family, and the utility of genetic testing in diagnosing PS. The particularity of this family case is represented by the fact that the index patient was diagnosed at age 16 with cardiac hypertrophy and ventricular pre-excitation while his mother, by age 42, only had Wolff−Parkinson−White syndrome, without left ventricle hypertrophy. Both the grandmother and the great-grandmother underwent pacemaker implantation at a young age because of conduction abnormalities. Making the distinction between PS and sarcomeric HCM is actionable, given the early-onset of the disease, the numerous life-threatening consequences and the high rate of conduction disorders. In patients who exhibit cardiac hypertrophy coexisting with ventricular pre-excitation, genetic screening for PRKAG2 mutations should be considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788523PMC
http://dx.doi.org/10.3390/life12122136DOI Listing

Publication Analysis

Top Keywords

ventricular pre-excitation
12
cardiac hypertrophy
12
prkag2 syndrome
8
sarcomeric hcm
8
prkag2 mutations
8
prkag2
6
intrafamilial phenotypical
4
phenotypical variability
4
variability linked
4
linked prkag2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!