The gold standard for identifying pathogens causing osteomyelitis (OM) is intraoperative tissue sampling culture (TSC). However, its positive rate remains inadequate. Here, we evaluated the efficiency of a novel strategy, known as devitalized bone surface culture (BSC), for detecting OM-related microorganisms and compared it to TSC. Between December 2021 and July 2022, patients diagnosed with OM and received both methods for bacterial identification were screened for analysis. In total, 51 cases were finally recruited for analysis. The mean age was 43.6 years, with the tibia as the top infection site. The positive rate of BSC was relatively higher than that of TSC (74.5% vs. 58.8%, p = 0.093), though no statistical difference was achieved. Both BSC and TSC detected definite pathogens in 29 patients, and their results were in accordance with each other. The most frequent microorganism identified by the BSC method was Staphylococcus aureus. Moreover, BSC took a significantly shorter median culture time than TSC (1.0 days vs. 3.0 days, p < 0.001). In summary, BSC may be superior to TSC for identifying OM-associated pathogens, with a higher detectable rate and a shorter culture time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781165PMC
http://dx.doi.org/10.3390/jpm12122050DOI Listing

Publication Analysis

Top Keywords

bone surface
8
surface culture
8
novel strategy
8
positive rate
8
culture time
8
tsc
6
bsc
6
culture
5
devascularized bone
4
culture novel
4

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Assessment of deep learning technique for fully automated mandibular segmentation.

Am J Orthod Dentofacial Orthop

February 2025

Department of Orthodontics, Faculty of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.

Introduction: This study aimed to assess the precision of an open-source, clinician-trained, and user-friendly convolutional neural network-based model for automatically segmenting the mandible.

Methods: A total of 55 cone-beam computed tomography scans that met the inclusion criteria were collected and divided into test and training groups. The MONAI (Medical Open Network for Artificial Intelligence) Label active learning tool extension was used to train the automatic model.

View Article and Find Full Text PDF

We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).

View Article and Find Full Text PDF

Hydroxyapatite (HA) is known to be the main component of the mineral part of bones. Due to its properties HA is studied for various applications such as bone graft, drug carrier, heterogeneous catalyst or sorbent for waste water treatment. HA can be synthesized or valorized from bone wastes, as the food industry produce billions of kilograms of animal bones.

View Article and Find Full Text PDF

Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!