G-quadruplexes are nucleotide sequences present in the promoter region of numerous oncogenes, having a key role in the suppression of gene transcription. Recently, the binding of anthraquinones from to G-quadruplex structures has been studied through various physico-chemical techniques. Intrigued by the reported results, we investigated the affinity of aloe emodin, aloe emodin-8-glucoside, and aloin to selected G-quadruplex nucleotide sequences by NMR spectroscopy. The structural determinants for the formation of the ligand/nucleotide complexes were elucidated and a model of the interactions between the tested compounds and and G-quadruplex DNA structures was built by integrated NMR and molecular modeling studies. Overall, the obtained results confirmed and implemented the previously reported findings, pointing out the complementarity of the different approaches and their contribution to a more detailed overview of the ligand/nucleotide complex formation. Furthermore, the proposed models of interaction could pave the way to the design of new nature-derived compounds endowed with increased G-quadruplex stabilizing activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788642PMC
http://dx.doi.org/10.3390/ijms232416018DOI Listing

Publication Analysis

Top Keywords

g-quadruplex dna
8
dna structures
8
nucleotide sequences
8
g-quadruplex
5
investigation interaction
4
interaction aloe
4
aloe vera
4
vera anthraquinone
4
anthraquinone metabolites
4
metabolites c-myc
4

Similar Publications

G-quadruplexes (G4s) are distinctive four-stranded nucleic acid structures formed by guanine-rich sequences, making them attractive targets for drug repurposing efforts. Modulating their stability and function holds promise for treating diseases like cancer. To identify potential drug candidates capable of interacting with these complex DNA formations, docking studies and molecular dynamics (MDs) simulations were conducted.

View Article and Find Full Text PDF

Oligostyrylbenzene Derivatives with Antiparasitic and Antibacterial Activity as Potent G-Quadruplex Ligands.

Molecules

December 2024

Departamento de Bioquímica y Farmacología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Spain.

G-quadruplexes (G4s) are non-canonical secondary structures that play a crucial role in the regulation of genetic expression. This study explores the interaction between G4s and a small family of oligostyrylbenzene (OSB) derivatives, characterized by tris(styryl)benzene and tetrastyrylbenzene backbones, functionalized with either trimethylammonium or 1-methylpyridinium groups. Initially identified as DNA ligands, these OSB derivatives have now been recognized as potent G4 binders, surpassing in binding affinity commercially available ligands such as pyridostatin and displaying good selectivity for G4s over duplex DNA.

View Article and Find Full Text PDF

Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy.

View Article and Find Full Text PDF

There is compelling evidence that the absorption of low-energy UV radiation directly by DNA in solution generates guanine radicals with quantum yields that are strongly dependent on the secondary structure. Key players in this unexpected phenomenon are the photo-induced charge transfer () states, in which an electric charge has been transferred from one nucleobase to another. The present work examines the factors affecting the population of these states during electronic relaxation.

View Article and Find Full Text PDF

We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!