Antibacterial restorative materials against caries-causing bacteria are highly preferred among high-risk patients, such as the elderly, and patients with metabolic diseases such as diabetes. This study aimed to enhance the antibacterial potential of resin composite with Magnesium-doped Zinc oxide (Mg-doped ZnO) nanoparticles (NPs) and to look for their effectiveness in the alloxan-induced diabetic model. Hexagonal Mg-doped ZnO NPs (22.3 nm diameter) were synthesized by co-precipitation method and characterized through ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analysis. The Mg-doped ZnO NPs (1, 2.5 and 5% w/w) were then evaluated for antibacterial activity using a closed system in vitro biofilm model. Significant enhancement in the antibacterial properties was observed in composites with 1% Mg-doped ZnO compared to composites with bare ZnO reinforced NPs (Streptococcus mutans, p = 0.0005; Enterococcus faecalis, p = 0.0074, Saliva microcosm, p < 0.0001; Diabetic Saliva microcosm, p < 0.0001). At 1−2.5% Mg-doped ZnO NPs concentration, compressive strength and biocompatibility of composites were not affected. The pH buffering effect was also achieved at these concentrations, hence not allowing optimal conditions for the anaerobic bacteria to grow. Furthermore, composites with Mg-doped ZnO prevented secondary caries formation in the secondary caries model of alloxan-induced diabetes. Therefore, Mg-doped ZnO NPs are highly recommended as an antibacterial agent for resin composites to avoid biofilm and subsequent secondary caries formation in high-risk patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785886PMC
http://dx.doi.org/10.3390/ijms232415926DOI Listing

Publication Analysis

Top Keywords

mg-doped zno
28
secondary caries
16
zno nps
16
zinc oxide
8
alloxan-induced diabetic
8
diabetic model
8
high-risk patients
8
zno
8
composites mg-doped
8
saliva microcosm
8

Similar Publications

Synthesis of Mg doped ZnO cauli-flower nanostructures using chemical spray and its investigation for ammonia gas sensing at room temperature.

Talanta

December 2024

Thin Films and Materials Science Research Laboratory, Department of Physics, Dayanand Science College, Latur, Maharashtra, 413512, India. Electronic address:

In this study, we report the synthesis, optical characterization and ultra-sensitive ammonia gas sensing properties of Mg-doped ZnO cauliflower like nanostructures obtained via chemical spray pyrolysis technique. The morphological and structural properties of the prepared films were investigated by Field Emission Scanning electron microscope (FESEM) and X-ray diffraction (XRD). Gas sensing and optical characterizations were carried out using Keithley electrometer and Uv-Vis.

View Article and Find Full Text PDF

We succeeded in producing pure and magnesium-doped zinc oxide nanoparticles (Mg-Zn NPs) by making use of a Prosopis farcta leaf extract and subsequently distinguished the quality of our NPs with the use of field energy scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), powder X-ray diffraction (PXRD), and UV-vis. In correlation to our observations, the particulates were spherically produced at a size of 20 nm with the ability to cause antimicrobial impacts on Streptococcus mutans bacteria and Candida albicans fungi. Inhibition zones of 18 ± 0.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in flexible UV photodetectors (PDs) have become popular among researchers due to their adaptability and wearability.
  • The study introduces a flip-chip bonding technique to enhance the performance of high-quality, high-temperature inorganic semiconductors for flexible optoelectronic applications.
  • A 7x7 pixel UV-FPDA, based on a Mg:ZnO/NiO heterojunction, shows impressive metrics like a responsivity of 75.8 A/W and exceptional bending stability, while utilizing an artificial neural network for improved imaging of UV light.
View Article and Find Full Text PDF

Zinc oxide (ZnO) and magnesium-doped zinc oxide (Mg-doped ZnO) nanoparticles (NPs) were synthesized using Ziziphus oxyphylla 's aqueous leaf extract as reducing agent. UV-Vis absorption peaks at 324 nm and 335 nm were indicative of ZnO and Mg-doped ZnO, respectively. FTIR absorption bands observed at 3238, 1043, 1400, 1401, 2186 and 2320 cm suggested the presence of phenols, alcohols, saturated hydrocarbons, and possibly alkynes.

View Article and Find Full Text PDF

Dipole Field-Driven Organic-Inorganic Heterojunction for Highly Sensitive Ultraviolet Photodetector.

ACS Appl Mater Interfaces

March 2024

National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.

Developing high-performance organic-inorganic ultraviolet (UV) photodetectors (PDs) has attracted considerable attention. However, this development has been hindered due to poor directional charge-transfer ratios in transport layers, excessive costs, and an ambiguous underlying mechanism. To tackle these challenges, we constructed a heterojunction of economic Mg-doped ZnO (MgZnO) nanorods and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS (P:P)] that utilizes dipole field-driven spontaneous polarization to enhance photogenerated charge kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!