Thoracic aortic aneurysm (TAA) involves extracellular matrix (ECM) remodeling of the aortic wall, leading to reduced biomechanical support with risk of aortic dissection and rupture. Activation of the renin-angiotensin system, and resultant angiotensin (Ang) II synthesis, is critically involved in the onset and progression of TAA. The current study investigated the effects of angiotensin (Ang) 1-7 on a murine model of TAA. Male 8-10-week-old ApoEKO mice were infused with Ang II (1.44 mg/kg/day) and treated with Ang 1-7 (0.576 mg/kg/day). ApoEKO mice developed advanced TAA in response to four weeks of Ang II infusion. Echocardiographic and histological analyses demonstrated increased aortic dilatation, excessive structural remodelling, perivascular fibrosis, and inflammation in the thoracic aorta. Ang 1-7 infusion led to attenuation of pathological phenotypic alterations associated with Ang II-induced TAA. Smooth muscle cells (SMCs) isolated from adult murine thoracic aorta exhibited excessive mitochondrial fission, oxidative stress, and hyperproliferation in response to Ang II. Treatment with Ang 1-7 resulted in inhibition of mitochondrial fragmentation, ROS generation, and hyperproliferation. Gene expression profiling used for characterization of the contractile and synthetic phenotypes of thoracic aortic SMCs revealed preservation of the contractile phenotype with Ang 1-7 treatment. In conclusion, Ang 1-7 prevented Ang II-induced vascular remodeling and the development of TAA. Enhancing Ang 1-7 actions may provide a novel therapeutic strategy to prevent or delay the progression of TAA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779869PMC
http://dx.doi.org/10.3390/ijms232415566DOI Listing

Publication Analysis

Top Keywords

ang 1-7
28
ang
13
thoracic aortic
12
smooth muscle
8
1-7
8
aortic aneurysm
8
angiotensin ang
8
progression taa
8
apoeko mice
8
thoracic aorta
8

Similar Publications

Renin-angiotensin-aldosterone system activation in plasma as marker for prognosis in critically ill patients with COVID-19: a prospective exploratory study.

Ann Intensive Care

January 2025

Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria.

Background: Acute respiratory distress syndrome (ARDS) associated with coronavirus infectious disease (COVID)-19 has been a challenge in intensive care medicine for the past three years. Dysregulation of the renin-angiotensin system (RAS) is linked to COVID-19, but also to non-COVID-19 ARDS. It is still unclear whether changes in the RAS are associated with prognosis of severe COVID-19.

View Article and Find Full Text PDF

The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT receptor (ATR), and in contrast the protective axis, which includes the receptors Mas, ATR and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease.

View Article and Find Full Text PDF

Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice.

View Article and Find Full Text PDF

Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin-Angiotensin System.

Nutrients

December 2024

Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.

Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect.

View Article and Find Full Text PDF

Hypertension is a major risk factor for many cardiovascular diseases, which can lead to kidney and heart disease, stroke, and premature death. Inhibiting angiotensin-converting enzyme (ACE) activity is an effective method to relieve hypertension. Previously, we screened an active peptide KYPHVF (KF6) from Boletus griseus-Hypomyces chrysospermus with excellent ACE inhibitory activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!