Fast pyrolysis of microcrystalline cellulose (MC) was carried out by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The effects of temperature, time, and a catalyst on the distribution of the pyrolysis products were analyzed. The reaction temperature and time can significantly affect the types and yields of compounds produced by cellulose pyrolysis. A pyrolysis temperature of 500-600 °C and pyrolysis time of 20 s optimized the yield of volatile liquid in the pyrolysis products of cellulose. In all catalytic experiments, the relative contents of alcohols (1.97%), acids (2.32%), and esters (4.52%) were highest when KSO was used as a catalyst. HZSM-5 promoted the production of carbohydrates (92.35%) and hydrocarbons (2.20%), while it inhibited the production of aldehydes (0.30%) and ketones (1.80%). MCM-41 had an obvious catalytic effect on cellulose, increasing the contents of aldehydes (41.58%), ketones (24.51%), phenols (1.82%), furans (8.90%), and N-compounds (12.40%) and decreasing those of carbohydrates (5.38%) and alcohols (0%).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779704 | PMC |
http://dx.doi.org/10.3390/ijerph192416837 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!