This study aimed to determine the effects of a virtual reality exercise program based on cognitive function and social skills on motor coordination in children with intellectual and developmental disabilities (IDD). Thirty-five children with IDD were randomly assigned to either the cognitive function and social skills-based virtual reality exercise system (CS-VR) group or the conventional virtual reality exercise system (C-VR) group. Before and after the intervention, each participant was tested for motor coordination (extended horizontal jump, hop, stationary dribble, overarm throw) and exercise performance (standing long jump, YMCA step test). Compared with the C-VR group, the CS-VR group showed significant improvements in motor coordination in terms of extended horizontal jump, hop, and overarm throw ( < 0.01, < 0.05, and < 0.01, respectively). In addition, compared with the C-VR group, the CS-VR group showed a significant increase in standing long jump ( < 0.01), although no significant between-group variation was found in stationary dribble and recovery heart rate (RHR) as part of the YMCA step test ( > 0.05, and > 0.05, respectively). These results suggest that for the development of motor skills in children with IDD, it is essential to develop an exercise program that reflects the levels of cognitive functions and social skills of these children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778621 | PMC |
http://dx.doi.org/10.3390/ijerph192416499 | DOI Listing |
Physiother Res Int
January 2025
Department of Physiotherapy, Centro Universitário FUNCESI, Itabira, Brazil.
Background And Purpose: To develop a new test to assess the motor coordination of the upper limbs, and to investigate the test-retest and inter-rater reliability, construct validity, standard error of measurement (SEM), minimum detectable change (MDC), and the reference values.
Methods: The Upper Extremity Motor Coordination Test (UEMOCOT)was applied for 20 s, with the individual touching two targets (one right and one left) as quickly as possible, first with the hand (manual task) and then with the index finger (finger task). To test-retest reliability, the UEMOCOT was administered two times.
Sci Rep
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
In recent times, a truly exquisite pharmaceutical marvel has graced the world of medicine, known as Safinamide (SAF). This opulent creation has been specifically tailored to cater to the needs of individuals afflicted with Parkinson's disease (PD), an esteemed neurological condition renowned for its regal ability to impede motor skills, coordination, and equilibrium. It is highly improbable that degradation products of pharmaceutical components would significantly compromise efficiency and safety of a drug during its shelf life.
View Article and Find Full Text PDFPhysiol Behav
January 2025
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address:
C1q/TNF-related protein 14 (CTRP14), also known as C1q-like 1 (C1QL1), is a synaptic protein predominantly expressed in the brain. It plays a critical role in the formation and maintenance of the climbing fiber-Purkinje cell synapses, ensuring that only one single winning climbing fiber from the inferior olivary neuron synapses with the proximal dendrites of Purkinje cells during the early postnatal period. Loss of CTRP14/C1QL1 results in incomplete elimination of supernumerary climbing fibers, leading to multiple persistent climbing fibers synapsing with the Purkinje cells.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany.
Driving is a complex task that requires effective neural processing and coordination, which degrade with aging. Previous studies suggest that age-related changes in cognitive and motor functions can influence driving performance. Herein, we investigated age-related differences and differences between reactive and proactive driving in blink behavior-related potentials, and source-level functional connectivity.
View Article and Find Full Text PDFBiol Sport
January 2025
Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany.
Despite the development of various motor learning models over many decades, the question of which model is most effective under which conditions to optimize the acquisition of skills remains a heated and recurring debate. This is particularly important in connection with learning sports movements with a high strength component. This study aims to examine the acute effects of various motor learning models on technical efficiency and force production during the Olympic snatch movement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!