A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Biodegradation of BTEX in the Subsurface of a Petrochemical Site near the Yangtze River, China. | LitMetric

Evaluation of Biodegradation of BTEX in the Subsurface of a Petrochemical Site near the Yangtze River, China.

Int J Environ Res Public Health

Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

Published: December 2022

The contamination of soil and groundwater with BTEX (benzene, toluene, ethyl benzene, and xylenes) is a common issue at petrochemical sites, posing a threat to the ecosystems and human health. The goal of this study was to evaluate the biodegradation of BTEX in the subsurface of a petrochemical site near the Yangtze River, thus providing scientific basis for bioremediation of the contaminated site. Both molecular analysis of field samples and microcosm study in the laboratory were performed for the evaluation. Soil and groundwater samples were collected from the site. Microcosms were constructed with inoculum from the soil and incubated anaerobically in the presence of nitrate, ferric oxide, manganese oxide, sulfate, and sodium bicarbonate, respectively. The initial concentration of each component of BTEX (benzene, toluene, ethyl benzene, o-xylene) was 4-5 mg/L. Actinobacteria was dominant in the highly contaminated soil, while Proteobacteria was dominant in the slightly contaminated soil and the groundwater. The relative abundances of Firmicutes, Spirochaetes, and Caldiserica were higher in the highly contaminated soil and groundwater samples compared to those in the corresponding slightly contaminated samples. The relative abundances of predicted functions, such as carbohydrate transport and metabolism, nucleotide transport and metabolism, coenzyme transport and metabolism, amino acid transport and metabolism, etc., in the highly contaminated soil and groundwater samples were higher than those in the corresponding slightly contaminated samples. In microcosms, biodegradations of BTEX occurred, and the first-order rate constants in the presence of various electron acceptors had the following order: sulfate (0.08-0.10/d) > sodium bicarbonate (0.07-0.09/d) > ferric oxide (0.04-0.06/d) > nitrate (0.03-0.05/d) > manganese oxide (0.01-0.04/d).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778668PMC
http://dx.doi.org/10.3390/ijerph192416449DOI Listing

Publication Analysis

Top Keywords

soil groundwater
20
contaminated soil
16
transport metabolism
16
groundwater samples
12
highly contaminated
12
biodegradation btex
8
btex subsurface
8
subsurface petrochemical
8
petrochemical site
8
site yangtze
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!