Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The contamination of soil and groundwater with BTEX (benzene, toluene, ethyl benzene, and xylenes) is a common issue at petrochemical sites, posing a threat to the ecosystems and human health. The goal of this study was to evaluate the biodegradation of BTEX in the subsurface of a petrochemical site near the Yangtze River, thus providing scientific basis for bioremediation of the contaminated site. Both molecular analysis of field samples and microcosm study in the laboratory were performed for the evaluation. Soil and groundwater samples were collected from the site. Microcosms were constructed with inoculum from the soil and incubated anaerobically in the presence of nitrate, ferric oxide, manganese oxide, sulfate, and sodium bicarbonate, respectively. The initial concentration of each component of BTEX (benzene, toluene, ethyl benzene, o-xylene) was 4-5 mg/L. Actinobacteria was dominant in the highly contaminated soil, while Proteobacteria was dominant in the slightly contaminated soil and the groundwater. The relative abundances of Firmicutes, Spirochaetes, and Caldiserica were higher in the highly contaminated soil and groundwater samples compared to those in the corresponding slightly contaminated samples. The relative abundances of predicted functions, such as carbohydrate transport and metabolism, nucleotide transport and metabolism, coenzyme transport and metabolism, amino acid transport and metabolism, etc., in the highly contaminated soil and groundwater samples were higher than those in the corresponding slightly contaminated samples. In microcosms, biodegradations of BTEX occurred, and the first-order rate constants in the presence of various electron acceptors had the following order: sulfate (0.08-0.10/d) > sodium bicarbonate (0.07-0.09/d) > ferric oxide (0.04-0.06/d) > nitrate (0.03-0.05/d) > manganese oxide (0.01-0.04/d).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778668 | PMC |
http://dx.doi.org/10.3390/ijerph192416449 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!