The Carbon Emission Characteristics and Reduction Potential in Developing Areas: Case Study from Anhui Province, China.

Int J Environ Res Public Health

School of Biological Science and Food Engineering, Fuyang Normal University, Fuyang 236037, China.

Published: December 2022

Global warming and world-wide climate change caused by increasing carbon emissions have attracted a widespread public attention, while anthropogenic activities account for most of these problems generated in the social economy. In order to comprehensively measure the levels of carbon emissions and carbon sinks in Anhui Province, the study adopted some specific carbon accounting methods to analyze and explore datasets from the following suggested five carbon emission sources of energy consumption, food consumption, cultivated land, ruminants and waste, and three carbon sink sources of forest, grassland and crops to compile the carbon emission inventory in Anhui Province. Based on the compiled carbon emission inventory, carbon emissions and carbon sink capacity were calculated from 2000 to 2019 in Anhui Province, China. Combined with ridge regression and scenario analysis, the STIRPAT model was used to evaluate and predict the regional carbon emission from 2020 to 2040 to explore the provincial low-carbon development pathways, and carbon emissions of various industrial sectors were systematically compared and analyzed. Results showed that carbon emissions increased rapidly from 2000 to 2019 and regional energy consumption was the primary source of carbon emissions in Anhui Province. There were significant differences found in the increasing carbon emissions among various industries. The consumption proportion of coal in the provincial energy consumption continued to decline, while the consumption of oil and electricity proceeded to increase. Furthermore, there were significant differences among different urban and rural energy structures, and the carbon emissions from waste incineration were increasing. Additionally, there is an inverted "U"-shape curve of correlation between carbon emission and economic development in line with the environmental Kuznets curve, whereas it indicated a "positive U"-shaped curve of correlation between carbon emission and urbanization rate. The local government should strengthen environmental governance, actively promote industrial transformation, and increase the proportion of clean energy in the energy production and consumption structures in Anhui Province. These also suggested a great potential of emission reduction with carbon sink in Anhui Province.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778387PMC
http://dx.doi.org/10.3390/ijerph192416424DOI Listing

Publication Analysis

Top Keywords

carbon emissions
32
carbon emission
28
anhui province
28
carbon
20
energy consumption
12
carbon sink
12
province china
8
increasing carbon
8
emissions
8
emissions carbon
8

Similar Publications

In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.

View Article and Find Full Text PDF

Load-Shifting Strategies for Cost-Effective Emission Reductions at Wastewater Facilities.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.

Significant hourly variation in the carbon intensity of electricity supplied to wastewater facilities introduces an opportunity to lower emissions by shifting the timing of their energy demand. This shift could be accomplished by storing wastewater, biogas from sludge digestion, or electricity from on-site biogas generation. However, the life cycle emissions and cost implications of these options are not clear.

View Article and Find Full Text PDF

Background: Climate change is a global challenge, caused by increasing greenhouse gas (GHG) emissions. Dental clinical practice contributes to these emissions through patient and staff travel, waste, energy and water consumption and procurement. Carbon footprinting quantifies GHG emissions.

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

Electrochemical approaches for CO point source, direct air, and seawater capture: identifying opportunities and synergies.

Environ Sci Pollut Res Int

January 2025

Institute for Integrated Energy Systems at University of Victoria (IESVic), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.

The world is increasingly facing the direct effects of climate change triggering warnings of a crisis for the healthy existence of humankind. The dominant driver of the climate emergency is the historical and continued accumulation of atmospheric CO altering net radiative forcing on the planet. To address this global issue, understanding the core chemistry of CO manipulation in the atmosphere and proximally in the oceans is crucial, to offer a direct partial solution for emissions handling through negative emissions technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!