With the continuous construction of transportation infrastructure, intersection nodes have been increasing rapidly, bringing growing numbers of tunnel- and exit-adjacent sections (TEAS) in mountain expressways in China. With the complex variation in the surrounding environment, drivers always face congestion and confusion on tunnel and the exit connecting sections (TECS) without adequate length, meanwhile excessively long TECS create detours. To better provide a sustainable design strategy for TEAS, based on a certain section of expressway in Shaanxi, China, this paper establishes a theoretical calculation model through analysis. The characteristics of traffic flow and drivers' light adaptation at tunnel exit are obtained through data collection and driving tests, and the length requirements of the tunnel and exit connecting sections (TECS) are discussed. A VISSIM microscopic simulation model is also built under various design schemes and entropy-based multi-attribute decision making (EBMADM) is used to objectively calculate the weights of the four selected evaluation indexes. Then, the design schemes of the TECS with different lengths have been comprehensively evaluated. The results show the match between the evaluation results of EBMADM with theoretical calculations under existing traffic conditions, which proves the rationality of EBMADM in such problems. For more cases, the results of the EBMADM evaluation show a positive correlation between the length of TECS for the best performing design scheme with traffic volume and diverging ratio.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778540 | PMC |
http://dx.doi.org/10.3390/e24121794 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!