The main goal of this study was to evaluate the potential of the Fisher-Shannon statistical method applied to the MODIS satellite time series to search for and explore any small multiyear trends and changes (herein also denoted as inner anomalies) in vegetation cover. For the purpose of our investigation, we focused on the vegetation cover of three peri-urban parks close to Rome and Naples (Italy). For each of these three areas, we analyzed the 2000-2020 time variation of four MODIS-based vegetation indices: evapotranspiration (ET), normalized difference vegetation index (NDVI), leaf area index (LAI), and enhanced vegetation index (EVI). These data sets are available in the Google Earth Engine (GEE) and were selected because they are related to the interactions between soil, water, atmosphere, and plants. To account for the great variability exhibited by the seasonal variations while identifying small multiyear trends and changes, we devised a procedure composed of two steps: (i) application of the Singular Spectrum Analysis (SSA) to each satellite-based time series to detect and remove the annual cycle including the seasonality and then (ii) analysis of the detrended signals using the Fisher-Shannon method, which combines the Shannon entropy and the Fisher Information Measure (FIM). Our results indicate that among all the three pilot test areas, Castel Volturno is characterized by the highest Shannon entropy and the lowest FIM that indicate a low level of order and organization of vegetation time series. This behaviour can be linked to the degradation phenomena induced by the parasite ( that has affected dramatically the area in recent years. Our results were nicely confirmed by the comparison with in situ analyzed and independent data sets revealing the existence of subtle, small multiyear trends and changes in MODIS-based vegetation indices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777874 | PMC |
http://dx.doi.org/10.3390/e24121784 | DOI Listing |
Sci Total Environ
January 2025
Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Ecoscience, Freshwater Ecology, University of Aarhus, Aarhus, Denmark. Electronic address:
Denitrification in large tropical river systems is likely important for nitrogen retention estimates, but is limited by the need for measurements and the ability to scale these estimates to relate seasonal changes to river geomorphology and discharge. Geomorphic units (GUs), that describe the structure of a river system based on their inundation frequency and vegetation cover, may be useful to characterise features that influence denitrification rates. In this study, we tested the hypothesis that measurements of potential denitrification rate (PDR) using denitrification enzyme assays from different GUs could be used to1) relate PDR to soil, vegetation and different land use and land-cover (LULC) types as controlling factors and 2) that these characteristics could be assessed using remote sensing data to model PDR over a large spatial scale (along a 50 km reach) for the Padma River (Bangladesh).
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Spatial Technologies and Remote Sensing (CSTARS), Institute of the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA. Electronic address:
Estuaries are complex ecosystems, being difficult to determine the way management actions affect them. This study quantitatively evaluated the spread of invasive submerged and floating aquatic macrophyte vegetation in Franks Tract of the Sacramento-San Joaquin Delta in response to two types of management actions, drought salinity barriers in years 2015, 2021 and 2022, and herbicide treatments in years 2004-2022. A Random Forest algorithm applied to airborne hyperspectral and satellite multispectral images generated maps of macrophyte cover in 2004-2022.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Institute of Environmental Science, Shanxi University, Taiyuan 030006, China. Electronic address:
Rhinitis is one of the most common respiratory diseases, influenced by various environmental factors such as green space, air pollution and indoor microbiomes. However, their interactions and combined effects have not been reported. We recruited 1121 preschool children from day care centers in a northern city of China.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Geography, Rampurhat College, PO-Rampurhat, Dist-Birbhum, 731224, India.
In fluvial environments, the shifting of river channels and bank erosion are frequently caused by both natural and anthropogenic factors. Riverine hazards like bank erosion and course alterations offer severe issues to the riparian villages along the lower basin of the Tista River in India, which substantially influence the livelihoods of inhabitants living there. This research addressed river channel shifting tendency and identified major bank erosion-prone villages along the lower course of the Tista River and challenges to the livelihoods of the riparian people.
View Article and Find Full Text PDFSci Rep
January 2025
Computer Vision Center, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!