Hyperchaos, Intermittency, Noise and Disorder in Modified Semiconductor Superlattices.

Entropy (Basel)

Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.

Published: November 2022

Weakly coupled semiconductor superlattices under DC voltage bias are nonlinear systems with many degrees of freedom whose nonlinearity is due to sequential tunneling of electrons. They may exhibit spontaneous chaos at room temperature and act as fast physical random number generator devices. Here we present a general sequential transport model with different voltage drops at quantum wells and barriers that includes noise and fluctuations due to the superlattice epitaxial growth. Excitability and oscillations of the current in superlattices with identical periods are due to nucleation and motion of charge dipole waves that form at the emitter contact when the current drops below a critical value. Insertion of wider wells increases superlattice excitability by allowing wave nucleation at the modified wells and more complex dynamics. Then hyperchaos and different types of intermittent chaos are possible on extended DC voltage ranges. Intrinsic shot and thermal noises and external noises produce minor effects on chaotic attractors. However, random disorder due to growth fluctuations may suppress any regular or chaotic current oscillations. Numerical simulations show that more than 70% of samples remain chaotic when the standard deviation of their fluctuations due to epitaxial growth is below 0.024 nm (10% of a single monolayer) whereas for 0.015 nm disorder suppresses chaos.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777605PMC
http://dx.doi.org/10.3390/e24121702DOI Listing

Publication Analysis

Top Keywords

semiconductor superlattices
8
epitaxial growth
8
hyperchaos intermittency
4
intermittency noise
4
noise disorder
4
disorder modified
4
modified semiconductor
4
superlattices weakly
4
weakly coupled
4
coupled semiconductor
4

Similar Publications

Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.

View Article and Find Full Text PDF

To realize the optical transfer of electron spin information, developing a semiconductor layer for efficient transport of spin-polarized electrons to the active layers is necessary. In this study, electron spin transport from a GaAs/AlGaAs superlattice (SL) barrier to InGaAs quantum dots (QDs) is investigated at room temperature through a combination of time-resolved photoluminescence and rate equation analysis, separating the two transport processes from the GaAs layer around the QDs and SL barrier. The electron transport time in the SL increases for a thicker quantum well (QW) of SL due to the weaker wavefunction overlap between adjacent QWs.

View Article and Find Full Text PDF

750 V Breakdown in GaN Buffer on 200 mm SOI Substrates Using Reverse-Stepped Superlattice Layers.

Micromachines (Basel)

November 2024

Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China.

In this work, we demonstrated the epitaxial growth of a gallium nitride (GaN) buffer structure on 200 mm SOI (silicon-on-insulator) substrates. This epitaxial layer is grown using a reversed stepped superlattice buffer (RSSL), which is composed of two superlattice (SL) layers with different Al component ratios stacked in reverse order. The upper layer, with a higher Al component ratio, introduces tensile stress instead of accumulative compressive stress and reduces the in situ curvature of the wafer, thereby achieving a well-controlled wafer bow ≤ ±50 µm for a 3.

View Article and Find Full Text PDF

Design and Growth of P-Type AlGaN Graded Composition Superlattice.

Micromachines (Basel)

November 2024

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, China.

A graded composition superlattice structure is proposed by combining simulation with experimentation. The structural factors affecting graded symmetric superlattices and graded asymmetric superlattices and their action modes are simulated and analyzed. A Mg-doped graded symmetric superlattice structure with high Al content, excellent structural quality, good surface morphology and excellent electrical properties was grown by MOCVD equipment.

View Article and Find Full Text PDF

Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled CuO-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!