With improving living standards, traditional blueberry planting modes cannot meet commercial demands, and blueberry cultivation with soilless substrate has become a popular solution in the blueberry industry. In this study, different soilless substrate treatments were found to markedly influence fruit appearance and intrinsic quality. The fruit in the 50:50 peat/pine bark (/) (FPB) treatment group had the maximum single fruit weight, largest vertical diameter, and brightest color, as well as the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) value, solid-acid ratio and anthocyanin content. The fruit in the 50:50 pine bark/rice husk (/) (FBR) treatment group had the highest total phenol and flavonoid levels, largest drip loss value, and lowest total pectin content and firmness value. Metabolomic analysis showed that flavonoid, carbohydrate, and carbohydrate conjugate, and amino acid, peptide, and analog levels were significantly different between groups. Fruit in the FPB group had the highest sucrose, D-fructose 1,6-bisphosphate, salidroside, tectorigenin, naringenin chalcone, trifolirhizin, and galangin contents. The increase in the relative expression of phenylalanine (Phe) promoted the synthesis of fruit polyphenols in the FBR group. Our results provide new insights into the effects of different substrates on the quality of blueberries and a reference for the soilless substrate cultivation of blueberries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777891 | PMC |
http://dx.doi.org/10.3390/foods11243965 | DOI Listing |
Sci Rep
January 2025
Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Kerman, Iran.
Global warming and declining rainfall in recent years have led to increased water and soil salinity in Iran agricultural lands. To address these challenges, greenhouse cultivation, particularly soilless culture, emerges as a critical solution for mitigating the effect of soil salinity and water scarcity on vegetable plant production in Iran. The aim of this experiment was to compare the growth and physiological responses of cucumber plants cultivated in both soil and soilless systems, using three distinct nutrient solutions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Soil Science, Tarbiat Modares University, Tehran, 14115-336, Iran.
A two-year study has been conducted to optimize saffron cormlet production in a soilless cultivation system. Variations in the concentration of phosphate, boron, and irrigation events were assessed in the first year. Subsequently, after optimizing the substrate composition, the effects of nutrient solution volume and the concentration of nitrate, iron, and boron were investigated on the yield and weight of cormlets and leaves, photosynthetic activities, and productivity of nutrient solutions in the second year.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. Electronic address:
Food Res Int
December 2024
Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address:
BMC Plant Biol
October 2024
Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China.
Erythropalum scandens Bl. is a medicinal woody vegetable found in southern China and parts of Southeast Asia. Studies have shown improper substrate hindered E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!