Inherited copy number variations (CNVs) can provide valuable information for cancer susceptibility and prognosis. However, their association with oropharynx squamous cell carcinoma (OPSCC) is still poorly studied. Using microarrays analysis, we identified three inherited CNVs associated with OPSCC risk, of which one was validated in 152 OPSCC patients and 155 controls and related to pseudogene-microRNA-mRNA interaction. Individuals with three or more copies of and pseudogenes (8p11.22 chromosome region) were under 6.49-fold increased risk of OPSCC. shared a highly homologous sequence with the 3'-UTR, predicted to be a binding site for miR-122b-5p. Individuals carrying more than three copies of and presented higher expression levels. Moreover, patients with total deletion or one copy of pseudogenes and with higher expression of miR-122b-5p presented worse prognoses. Our data suggest, for the first time, that and pseudogene-inherited CNV could modulate OPSCC occurrence and prognosis, possibly through the interaction of pseudogene transcript, miR-122b-5p, and .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778539 | PMC |
http://dx.doi.org/10.3390/genes13122408 | DOI Listing |
J Clin Endocrinol Metab
January 2025
Marmara University School of Medicine, Department of Pediatric Endocrinology, 34854, Istanbul, Turkey.
Context: Duplications occurring upstream of the SOX9 gene have been identified in a limited subset of patients with 46,XX testicular/ovotesticular differences/disorders of sex development (DSD). However, comprehensive understanding regarding their clinical presentation and diagnosis is limited.
Objective: To gain further insight into the diagnosis of a large cohort of 46,XX individuals with duplications upstream of SOX9.
Microb Pathog
January 2025
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India. Electronic address:
Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.
View Article and Find Full Text PDFIntroduction: Structural variants (SVs) of the nebulin gene ( ), including intragenic duplications, deletions, and copy number variation of the triplicate region, are an established cause of recessively inherited nemaline myopathies and related neuromuscular disorders. Large deletions have been shown to cause dominantly inherited distal myopathies. Here we provide an overview of 35 families with muscle disorders caused by such SVs in .
View Article and Find Full Text PDFIntern Emerg Med
January 2025
Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
Gallstones are among the most frequent hepatobiliary conditions. Although in most cases, they remain asymptomatic, they can cause complications and, in such cases, invasive treatments like endoscopic retrograde cholangiography (ERC) or cholecystectomy are required. Here, we present the results of genetic testing of a single family with a high incidence of symptomatic gallstones and cholestatic liver phenotypes.
View Article and Find Full Text PDFBMC Pediatr
January 2025
Department of PICU, Children's Medical Center, the First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, China.
Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited ion channelopathy characterized by a structurally normal heart sensitive to catecholamines. It primarily presents as Bidirectional ventricular tachycardia (BiVT) and is a significant cause of sudden cardiac death in children.
Case Presentation: We report our experience with central Extracorporeal Membrane Oxygenation (ECMO) therapy in a 4-year-old boy with CPVT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!