The structurally and genetically distinct sigma-1 receptor (S1R) and sigma-2 receptor (S2R) comprise a unique class of drug binding sites. Their alleles are associated with human diseases involving neuronal systems, such as age-related macular degeneration (AMD) characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. Previous studies have suggested neuroprotective benefits for the brain and retina from pharmacological modulation of S1R and/or S2R. However, the effect of such modulation on AMD pathology remains underexplored. Here, we evaluated S1R- or S2R-selective modulation in an AMD-related model of -/--/- mice with a disrupted visual cycle that predisposes RPE and photoreceptors to illumination-induced damage. For S1R modulation, we used (+)-pentazocine, which is a high-affinity S1R-selective drug. For S2R modulation, we chose CM398, a high-affinity and highly S2R-selective ligand with drug-like properties. -/--/- mice received a single i.p. injection of (+)-pentazocine or CM398 or vehicle 30 min before illumination. Pretreatment with (+)-pentazocine improved electroretinogram a- and b-waves compared to that with vehicle. Consistently, in another AMD-related mouse model induced by tail-vein injected NaIO, S1R genetic ablation aggravated photoreceptor loss. In -/--/- mice, pretreatment with CM398 appeared to partially avert illumination-induced photoreceptor loss and autofluorescent granule formation that signals RPE damage, as revealed by optical coherence tomography. Thus, this study using AMD-related models provides evidence of photoreceptor protection afforded by selective modulation of S1R or S2R.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778362PMC
http://dx.doi.org/10.3390/genes13122386DOI Listing

Publication Analysis

Top Keywords

-/--/- mice
12
photoreceptor protection
8
amd-related mouse
8
mouse model
8
sigma-2 receptor
8
modulation s1r
8
s2r modulation
8
photoreceptor loss
8
modulation
7
s1r
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!