Novel Insights into MEG3/miR664a-3p/ADH4 Axis and Its Possible Role in Hepatocellular Carcinoma from an in Silico Perspective.

Genes (Basel)

Department of Biochemistry, Center of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India.

Published: November 2022

Hepatocellular carcinoma (HCC) is a complex disease involving altered interactomes of transcripts and proteins. MicroRNAs (miRNAs) are small-noncoding RNAs that can interact with specific gene transcripts and an array of other vital endogenous non-coding RNAs (lncRNAs) that can influence gene expression. Maternally Expressed Gene 3 (MEG3) is an imprinted lncRNA that is reported to be downregulated in HCC (in both cell lines and tumors). Alcohol Dehydrogenase 4 (ADH4) is a well-known prognostic protein biomarker for predicting the survival outcomes of patients with hepatocellular carcinoma whose expression is regulated by miR-664a-3p, which is upregulated in HCC. In this study, we performed a battery of robust and systematic in silico analyses to predicate the possible lncRNA-miRNA interactions between MEG3, miR-664a-3p, and ADH4. miRNA-mRNA and lncRNA-miRNA hybrid structures were primarily obtained, and the minimum free energies (MFEs) for the 3'UTR (Untranslated Regions) of ADH4-miR-664a-3p and the 3'UTR of MEG3-miR-664a-3p interactions were assessed to predict the stability of the obtained RNA heteroduplex hybrids. The hybrid with the least minimum free energy (MFE) was considered to be the most favorable. The MFEs were around -28.1 kcal/mol and -31.3 kCal/mol for the ADH4-miR-664a-3p and MEG3-miR-66a-3p RNA hybrids, respectively. This demonstrated that lncRNA-MEG3 might be a competitive endogenous RNA that acts as a molecular sponge for miR-664a-3p. In summary, our interaction analyses results predict the significance of the MEG3/miR-664a-3p/ADH4 axis, where MEG3 downregulation results in miR-664a-3p overexpression and the subsequential underexpression of ADH4 in HCC, as a novel axis of interest that demands further validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778073PMC
http://dx.doi.org/10.3390/genes13122254DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
12
minimum free
8
novel insights
4
insights meg3/mir664a-3p/adh4
4
meg3/mir664a-3p/adh4 axis
4
axis role
4
role hepatocellular
4
carcinoma silico
4
silico perspective
4
perspective hepatocellular
4

Similar Publications

Subtype-specific human endogenous retrovirus K102 envelope protein is a novel serum immunosuppressive biomarker of cancer.

Front Immunol

January 2025

Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Immune dysfunction is one of the hallmarks of cancer and plays critical roles in immunotherapy resistance, but there is no serum biomarker that can be used to evaluate immune-dysfunction status of cancer patients. Here, we identified subtype-specific human endogenous retrovirus K102 envelope (HERV-K102-Env) with immunosuppressive activity in circulating blood as a novel serum immunosuppressive biomarker of cancer. We first generated monoclonal antibodies against K102-Env with high sensitivity and specificity, and we developed an ELISA assay to detect serum K102-Env.

View Article and Find Full Text PDF

Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC.

Front Immunol

January 2025

National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.

View Article and Find Full Text PDF

The role of lnc‑MAPKAPK5‑AS1 in immune cell infiltration in hepatocellular carcinoma: Bioinformatics analysis and validation.

Oncol Lett

March 2025

Guangzhou Center for Disease Control and Prevention, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.

The oncogenic and tumor suppressor roles of lnc-MAPKAPK5-AS1 in multiple cancers suggest its complexity in modulating cancer progression. The expression and promoter methylation level of lnc-MAPKAPK5-AS1 in hepatocellular carcinoma (HCC) was investigated through data mining from The Cancer Genome Atlas and Gene Expression Omnibus and its significance in prognosis and immunity was explored. lnc-MAPKAPK5-AS1 was co-expressed with its protein-coding gene MAPKAPK5 in HCC and exhibited upregulation in HCC tissues as a result of hypomethylation of its promoter region.

View Article and Find Full Text PDF

Introduction: Extrachromosomal circular DNA (eccDNA) regulates tumor occurrence and development. Relevant eccDNA profiles have been established for various types of cancer; however, the eccDNA expression profiles in the blood of patients with hepatocellular carcinoma (HCC) and liver cirrhosis (LC) remain unknown. The present study aimed to investigate the eccDNA expression profiles in the blood of patients with HCC and LC.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a significant global health concern, with chronic hepatitis B virus (HBV) infection being a major contributor. Understanding the mechanisms of HBV-associated HCC is crucial to improving the prognosis and developing effective treatments.

Methods: HBV-associated HCC datasets (GSE19665, GSE121248, GSE55092, GSE94660, and TCGA-LIHC) acquired from public databases were mined to identify key driver genes by differentially expressed gene analysis, weighted gene co-expression network analysis (WGCNA), followed by protein-protein interaction network analysis, Lasso-Cox regression analysis, and randomforestSRC algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!