The mammalian STE 20-like protein kinase 4 (MST4) gene is highly expressed in several cancer types, but little is known about the role of MST4 in breast cancer, and the function of MST4 during epithelial-mesenchymal transition (EMT) has not been fully elucidated. Here we report that overexpression of MST4 in breast cancer results in enhanced cell growth, migration, and invasion, whereas inhibition of MST4 expression significantly attenuates these properties. Further study shows that MST4 promotes EMT by activating Akt and its downstream signaling molecules such as E-cadherin/N-cadherin, Snail, and Slug. MST4 also activates AKT and its downstream pro-survival pathway. Furthermore, by analyzing breast cancer patient tissue microarray and silicon datasets, we found that MST4 expression is much higher in breast tumor tissue compared to normal tissue, and significantly correlates with cancer stage, lymph node metastasis and a poor overall survival rate ( 0.05). Taken together, our findings demonstrate the oncogenic potential of MST4 in breast cancer, highlighting its role in cancer cell proliferation, migration/invasion, survival, and EMT, suggesting a possibility that MST4 may serve as a novel therapeutic target for breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777386 | PMC |
http://dx.doi.org/10.3390/cells11244057 | DOI Listing |
Cancer Cell Int
December 2024
Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.
View Article and Find Full Text PDFClin Breast Cancer
December 2024
MKA Breast Cancer Clinic, Tepe Prime, Ankara, Turkey. Electronic address:
Trends Mol Med
December 2024
Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:
Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:
Am J Pathol
December 2024
Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!