A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic Rewiring toward Oxidative Phosphorylation Disrupts Intrinsic Resistance to Ferroptosis of the Colon Adenocarcinoma Cells. | LitMetric

Glutathione peroxidase 4 (GPX4) has been reported as one of the major targets for ferroptosis induction, due to its pivotal role in lipid hydroperoxide removal. However, recent studies pointed toward alternative antioxidant systems in this context, such as the Coenzyme Q-FSP1 pathway. To investigate how effective these alternative pathways are in different cellular contexts, we used human colon adenocarcinoma (CRC) cells, highly resistant to GPX4 inhibition. Data obtained in the study showed that simultaneous pharmacological inhibition of GPX4 and FSP1 strongly compromised the survival of the CRC cells, which was prevented by the ferroptosis inhibitor, ferrostatin-1. Nonetheless, this could not be phenocopied by genetic deletion of FSP1, suggesting the development of resistance to ferroptosis in FSP1-KO CRC cells. Considering that CRC cells are highly glycolytic, we used CRC Warburg-incompetent cells, to investigate the role metabolism plays in this phenomenon. Indeed, the sensitivity to inhibition of both anti-ferroptotic axes (GPx4 and FSP1) was fully revealed in these cells, showing typical features of ferroptosis. Collectively, data indicate that two independent anti-ferroptotic pathways (GPX4-GSH and CoQ10-FSP1) operate within the overall physiological context of cancer cells and in some instances, their inhibition should be coupled with other metabolic modulators, such as inhibitors of glycolysis/Warburg effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774558PMC
http://dx.doi.org/10.3390/antiox11122412DOI Listing

Publication Analysis

Top Keywords

crc cells
16
resistance ferroptosis
8
colon adenocarcinoma
8
cells
8
cells highly
8
gpx4 fsp1
8
ferroptosis
5
crc
5
metabolic rewiring
4
rewiring oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!