Epithelial ovarian cancer (EOC) is highly aggressive with poor patient outcomes, and a deeper understanding of ovarian cancer tumorigenesis could help guide future treatment development. We proposed an optimized hit network-target sets model to systematically characterize the underlying pathological mechanisms and intra-tumoral heterogeneity in human ovarian cancer. Using TCGA data, we constructed an epithelial ovarian cancer regulatory network in this study. We use three distinct methods to produce different HNSs for identification of the driver genes/nodes, core modules, and core genes/nodes. Following the creation of the optimized HNS (OHNS) by the integration of DN (driver nodes), CM (core module), and CN (core nodes), the effectiveness of various HNSs was assessed based on the significance of the network topology, control potential, and clinical value. Immunohistochemical (IHC), qRT-PCR, and Western blotting were adopted to measure the expression of hub genes and proteins involved in epithelial ovarian cancer (EOC). We discovered that the OHNS has two key advantages: the network's central location and controllability. It also plays a significant role in the illness network due to its wide range of capabilities. The OHNS and clinical samples revealed the endometrial cancer signaling, and the PI3K/AKT, NER, and BMP pathways. MUC16, FOXA1, FBXL2, ARID1A, COX15, COX17, SCO1, SCO2, NDUFA4L2, NDUFA, and PTEN hub genes were predicted and may serve as potential candidates for new treatments and biomarkers for EOC. This research can aid in better capturing the disease progression, the creation of potent multi-target medications, and the direction of the therapeutic community in the optimization of effective treatment regimens by various research objectives in cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776135PMC
http://dx.doi.org/10.3390/biology11121851DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
24
epithelial ovarian
12
cancer
8
hit network-target
8
network-target sets
8
sets model
8
cancer eoc
8
hub genes
8
ovarian
6
identify biomarkers
4

Similar Publications

Purpose: To provide updated guidance regarding neoadjuvant chemotherapy (NACT) and primary cytoreductive surgery (PCS) among patients with stage III-IV epithelial ovarian, fallopian tube, or primary peritoneal cancer (epithelial ovarian cancer [EOC]).

Methods: A multidisciplinary Expert Panel convened and updated the systematic review.

Results: Sixty-one studies form the evidence base.

View Article and Find Full Text PDF

Purpose: Clinical variables alone have limited ability to determine which patients will have recurrence after radical prostatectomy (RP). We evaluated the ability of locked multimodal artificial intelligence (MMAI) algorithms trained on prostate biopsy specimens to predict prostate cancer specific mortality (PCSM) and overall survival (OS) among patients undergoing radical prostatectomy with digitized RP specimens.

Materials And Methods: The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Randomized Controlled Trial randomized subjects from 1993-2001 to cancer screening or control.

View Article and Find Full Text PDF

Aim: o point out how novel analysis tools of AI can make sense of the data acquired during OL and OC diagnosis and treatment in an effort to help improve and standardize the patient pathway for these disease.

Material And Methods: ultilizing programmed detection of heterogeneus OL and OC habitats through radiomics and correlate to imaging based tumor grading plus a literature review.

Results: new analysis pipelines have been generated for integrating imaging and patient demographic data and identify new multi-omic biomarkers of response prediction and tumour grading using cutting-edge artificial intelligence (AI) in OL and OC.

View Article and Find Full Text PDF

Background: Hematologic changes after splenectomy and hyperthermic intraperitoneal chemotherapy (HIPEC) can complicate postoperative assessment of infection. This study aimed to develop a machine-learning model to predict postoperative infection after cytoreductive surgery (CRS) and HIPEC with splenectomy.

Methods: The study enrolled patients in the national TriNetX database and at the Johns Hopkins Hospital (JHH) who underwent splenectomy during CRS/HIPEC from 2010 to 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!