Stable isotope values can express resource usage by organisms, but their precise interpretation is predicated using a controlled experiment-based validation process. Here, we develop a stable isotope tracking approach towards exploring resource shifts in a key primary consumer species . We used a diet switch experiment and model fitting to quantify the stable carbon (C) and nitrogen (N) isotope turnover rates and discrimination factors for eight dietary sources of the plankton species that differ in their cellular organization (unicellular or filamentous), pigment and nutrient compositions (sterols and polyunsaturated fatty acids), and secondary metabolite production rates. We also conduct a starvation experiment. We evaluate nine tissue turnover models using Akaike's information criterion and estimate the repetitive trophic discrimination factors. Using the parameter estimates, we calculate the hourly stable isotope turnover rates. We report an exceedingly faster turnover value following dietary switching (72 to 96 h) and a measurable variation in trophic discrimination factors. The results show that toxic stress and the dietary quantity and quality induce trophic isotope variation in individuals. This study provides insight into the physiological processes that underpin stable isotope patterns. We explicitly test multiple alternative dietary sources and fasting and discuss the parameters that are fundamental for field- and laboratory-based stable isotope studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775432PMC
http://dx.doi.org/10.3390/biology11121816DOI Listing

Publication Analysis

Top Keywords

stable isotope
20
discrimination factors
12
isotope
8
trophic isotope
8
isotope variation
8
variation individuals
8
diet switch
8
switch experiment
8
isotope turnover
8
turnover rates
8

Similar Publications

The Southern California Bight is an ecologically important region for many local and migratory fauna. We combine bulk and compound-specific amino acid stable isotope measurements in the skeletons of proteinaceous octocorals with new regional ocean modeling system model output to explore biogeochemical changes at two locations within the Bight - Santa Cruz Basin and Santa Barbara Channel. Separated by the Channel Islands, these sites display distinct oceanographic regimes.

View Article and Find Full Text PDF

Utility of a C-Spirulina Stable Isotope Gastric Emptying Breath Test in Diabetes Mellitus.

Neurogastroenterol Motil

January 2025

Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.

Background: The carbon-13 spirulina gastric emptying breath test (GEBT) is approved to identify delayed, but not accelerated, gastric emptying (GE). We compared the utility of the GEBT to scintigraphy for diagnosing abnormal GE in patients with diabetes mellitus.

Methods: Twenty-eight patients with diabetes ate a 230-kcal test meal labeled with technetium 99 m and C-spirulina, after which 10 scintigraphic images and breath samples (baseline, 15, 30, 45, 60, 90, 120, 150, 180, 210, and 240 min) were collected on 2 occasions 1 week apart.

View Article and Find Full Text PDF

Photochemistry of Microsolvated Nitrous Acid: Observation of the Water-Separated Complex of Nitric Oxide and Hydroxyl Radical.

J Phys Chem Lett

January 2025

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

The photochemistry of nitrous acid (HONO) plays a crucial role in atmospheric chemistry as it serves as a key source of hydroxyl radicals (OH) in the atmosphere; however, our comprehension of the underlying mechanism for the photochemistry of HONO especially in the presence of water is far from being complete as the transient intermediates in the photoreactions have not been observed. Herein, we report the photochemistry of microsolvated HONO by water in a cryogenic N matrix. Specifically, the 1:1 hydrogen-bonded water complex of HONO was facially prepared in the matrix through stepwise photolytic O oxidation of the water complex of imidogen (NH-HO) via the intermediacy of the elusive water complex of peroxyl isomer HNOO.

View Article and Find Full Text PDF

Development and application of an efficient, accurate, and environmentally friendly liquid chromatography-tandem mass spectrometry method for the determination of five Alternaria toxins in wheat.

Food Chem X

January 2025

Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China.

The contamination of Alternaria toxins poses a potential risk to human health. This study developed a rapid, efficient, and environmentally friendly method for the simultaneous determination of five types of Alternaria toxins in wheat using high-precision and stable isotope liquid chromatography tandem mass spectrometry. The comparison between dilution method and solid-phase extraction method shows that the former achieves satisfactory results with a simple and convenient sample purification method.

View Article and Find Full Text PDF

Stable-isotope resolved metabolomics (SIRM) is a powerful approach for characterizing metabolic states in cells and organisms. By incorporating isotopes, such as C, into substrates, researchers can trace reaction rates across specific metabolic pathways. Integrating metabolomics data with gene expression profiles further enriches the analysis, as we demonstrated in our prior study on glioblastoma metabolic symbiosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!