An increasing ecological phase shift from coral-dominated reefs to macroalgae-dominated reefs as a result of anthropogenic impacts, such as eutrophication, sedimentation, and overfishing, has been observed in many reef systems around the world. Ocean warming is a universal threat to both corals and macroalgae, which may alter the outcome of competition between them. Therefore, in order to explore the effects of indirect and direct exposure to macroalgae on the physiological, biochemical, and genetic expression of corals at elevated temperature, the coral and highly invasive green algae were chosen. Physiologically, the results exhibited that, between the control and direct contact treatments, the density and chlorophyll a content of zooxanthella decreased by 53.1% and 71.2%, respectively, when the coral indirectly contacted with the algae at an ambient temperature (27 °C). Moreover, the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in coral tissue were enhanced by interacting with algae. After an increase of 3 °C, the density and chlorophyll a content of the zooxanthella reduced by 84.4% and 93.8%, respectively, whereas the enzyme activities of SOD and CAT increased 2.3- and 3.1-fold. However, only the zooxanthellae density and pigment content decreased when was co-cultured with at 30 °C. Molecularly, different from the control group, the differentially expressed genes (DEGs) such as Rab family, ATG family, and Casp7 genes were significantly enriched in the endocytosis, autophagy, and apoptosis pathways, regardless of whether was directly or indirectly exposed to at 27 °C. Under thermal stress without algae interaction, the DEGs were significantly enriched in the microbial immune signal transduction pathways, such as the Toll-like receptor signaling pathway and TNF signaling pathway, while multiple cellular immunity (IFI47, TRAF family) and oxidative stress (CAT, SODC, HSP70) genes were upregulated. Inversely, compared with corals without interaction with algae at 30 °C, the DEGs of the corals that interacted with at 30 °C were remarkably enriched in apoptosis and the NOD-like receptor signaling pathway, including the transcription factors such as the Casp family and TRAF family. In conclusion, the density and chlorophyll a content of zooxanthella maintained a fading tendency induced by the macroalgae at ambient temperatures. The oxidative stress and immune response levels of the coral was elevated at 30 °C, but the macroalgae alleviated the negative effects triggered by thermal stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775474PMC
http://dx.doi.org/10.3390/biology11121792DOI Listing

Publication Analysis

Top Keywords

thermal stress
12
density chlorophyll
12
chlorophyll content
12
content zooxanthella
12
signaling pathway
12
enzyme activities
8
receptor signaling
8
traf family
8
oxidative stress
8
°c
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!