Ice shelves cover ~1.6 million km of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774262PMC
http://dx.doi.org/10.3390/biology11121705DOI Listing

Publication Analysis

Top Keywords

ice shelf
16
ice-shelf front
12
western weddell
8
weddell sea
8
climate change
8
seafloor assemblages
8
distance ice
8
ice-shelf
7
assemblages
6
ice
5

Similar Publications

Efficient cryopreservation of stem cells is crucial to fabricating off-the-shelf cell products for tissue engineering and regeneration medicine. However, it remains challenging due to utilization of toxic cryoprotectants for reducing ice-related cryodamages to stem cells during freeze-thaw cycle, stringent post-thaw washing process, and further integration of stem cells with scaffolds to form tissue engineering constructs for downstream applications. Herein, a novel cryopreservation platform of stem cells based on an antifreezing polyvinylpyrrolidone/gellan gum/gelatin (PGG) scaffold together is reported with an L-proline assisted cell pre-dehydration strategy.

View Article and Find Full Text PDF

Background And Aims: High-throughput in vitro pharmacological toxicity testing is essential for drug discovery. Precision-cut liver slices (PCLS) provide a robust system for screening that is more representative of the complex 3D structure of the whole liver than isolated hepatocytes. However, PCLS are not available as off-the-shelf products, significantly limiting their translational potential.

View Article and Find Full Text PDF

Microplastic (MP) pollution has reached the remotest areas of the globe, including the polar regions. In the Arctic Ocean, MPs have been detected in ice, snow, water, sediment, and biota, but their temporal dynamics remain poorly understood. To better understand the transport pathways and drivers of MP pollution in this fragile environment, this study aims to assess MPs (≥ 11 μm) in sediment trap samples collected at the HAUSGARTEN observatory (Fram Strait) from September 2019 to July 2021.

View Article and Find Full Text PDF

Muscle foods that are highly perishable require effective preservation technologies to maintain their quality and extend their shelf life. Electrostatic field (EF) treatment, superchilling (SC), and their combined technologies have received attention for their effectiveness in improving muscle food quality. However, the lack of a comprehensive understanding of their mechanism and combined effects on muscle foods has limited their application.

View Article and Find Full Text PDF

Background: Sucrose is produced in the greatest quantity of all industrially produced organic substances and can be used in almost all processed foods. Glucose is the most abundant monosaccharide and contained in many foodstuffs naturally or added as an ingredient.

Objective: To validate the performance of the Enzytec™ Liquid Combi Sucrose/D-Glucose test kit for the determination of sucrose and D-glucose in juices, chocolate, breakfast cereals, ice cream, sweetened condensed milk, wine, beer, and soft drinks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!