Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research on visual encoding models for functional magnetic resonance imaging derived from deep neural networks, especially CNN (e.g., VGG16), has been developed. However, CNNs typically use smaller kernel sizes (e.g., 3 × 3) for feature extraction in visual encoding models. Although the receptive field size of CNN can be enlarged by increasing the network depth or subsampling, it is limited by the small size of the convolution kernel, leading to an insufficient receptive field size. In biological research, the size of the neuronal population receptive field of high-level visual encoding regions is usually three to four times that of low-level visual encoding regions. Thus, CNNs with a larger receptive field size align with the biological findings. The RepLKNet model directly expands the convolution kernel size to obtain a larger-scale receptive field. Therefore, this paper proposes a mixed model to replace CNN for feature extraction in visual encoding models. The proposed model mixes RepLKNet and VGG so that the mixed model has a receptive field of different sizes to extract more feature information from the image. The experimental results indicate that the mixed model achieves better encoding performance in multiple regions of the visual cortex than the traditional convolutional model. Also, a larger-scale receptive field should be considered in building visual encoding models so that the convolution network can play a more significant role in visual representations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775903 | PMC |
http://dx.doi.org/10.3390/brainsci12121633 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!