In the literature, many studies have described the 3D printing of ceramic-based scaffolds (e.g., printing with calcium phosphate cement) in the form of linear structures with layer rotations of 90°, although no right angles can be found in the human body. Therefore, this work focuses on the adaptation of biological shapes, including a layer rotation of only 1°. Sample shapes were printed with calcium phosphate cement using a 3D Bioplotter from EnvisionTec. Both straight and wavy spokes were printed in a round structure with 12 layers. Depending on the strand diameter (200 and 250 µm needle inner diameter) and strand arrangement, maximum failure loads of 444.86 ± 169.39 N for samples without subsequent setting in PBS up to 1280.88 ± 538.66 N after setting in PBS could be achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775344 | PMC |
http://dx.doi.org/10.3390/biomedicines10123242 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!