Twitcher (Twi) is a neurological Krabbe disease (KD, or globoid cell leukodystrophy) spontaneous mutant line in mice. The genome of the Twi mouse presents a single nucleotide polymorphism (SNP), leading to an enzymatically inactive galactosylceramidase (Galc) protein that causes KD. In this context, mouse Twi genotyping is an essential step in KD research. To date, the genotyping method used is labor-intensive and often has ambiguous results. Here, we evaluated a novel protocol for the genotype determination of Galc mutation status in Twi mice based on the allele-discrimination real-time polymerase chain reaction (PCR). Here, DNA is extracted from Twi mice (n = 20, pilot study; n = 120, verification study) and control group (n = 10, pilot study; n = 30 verification study) and assessed by allele-discrimination real-time PCR to detect SNP c.355G>A. Using the allele-discrimination PCR, all of the samples are identified correctly with the genotype GG (wild-type, WT), GA (heterozygote, HET), or AA (homozygote, HOM) using the first analysis and no animals are not genotyped. We demonstrated that this novel method can be used to distinguish KD timely, accurately, and without ambiguity in HOM, WT, and HET animals. This protocol represents a great opportunity to increase accuracy and speed in KD research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776230 | PMC |
http://dx.doi.org/10.3390/biomedicines10123146 | DOI Listing |
Sci Rep
December 2024
Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA.
Lipocalin-2 (LCN2) is an acute-phase secretory molecule significantly upregulated in various neuroinflammatory and demyelinating conditions. Krabbe disease (KD) is a neurodegenerative lysosomal disorder caused by a galactosylceramidase (GALC) deficiency, accumulating cytotoxic psychosine in nervous systems, and subsequent neuroinflammation. Here, we show that LCN2 is highly overexpressed in GALC-deficient astrocytes.
View Article and Find Full Text PDFPLoS One
December 2024
Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.
Krabbe disease (KD) is an autosomal recessive lysosomal storage disorder caused by loss-of-function mutations in the gene, which encodes for the enzyme galactosylceramidase (GALC). GALC is crucial for myelin metabolism. Functional deficiency of GALC leads to toxic accumulation of psychosine, dysfunction and death of oligodendrocytes, and eventual brain demyelination.
View Article and Find Full Text PDFbioRxiv
July 2024
Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
Krabbe disease (Kd) is a lysosomal storage disorder (LSD) caused by the deficiency of the lysosomal galactosylceramidase (GALC) which cleaves the myelin enriched lipid galactosylceramide (GalCer). Accumulated GalCer is catabolized into the cytotoxic lipid psychosine that causes myelinating cells death and demyelination which recruits microglia/macrophages that fail to digest myelin debris and become globoid cells. Here, to understand the pathological mechanisms of Kd, we used induced pluripotent stem cells (iPSCs) from Kd patients to produce myelinating organoids and microglia.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
Lipid mediators from fatty acid oxidation have been shown to be associated with the severity of Krabbe disease (KD), a disorder linked to mutations in the galactosylceramidase () gene. This study aims to investigate the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on KD traits and fatty acid metabolism using Twitcher (Tw) animals as a natural model for KD. Wild-type (Wt), heterozygous (Ht), and affected Tw animals were treated orally with 36 mg n-3 PUFAs/kg body weight/day from 10 to 35 days of life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!