Bacterial drug resistance to antibiotics is growing globally at unprecedented levels, and strategies to overcome treatment deficiencies are continuously developing. In our approach, we utilized metal nanoparticles, silver nanoparticles (AgNPs), known for their wide spread and significant anti-bacterial actions, and the high-dose regimen of lincosamide antibiotic, lincomycin, to demonstrate the efficacy of the combined delivery concept in combating the bacterial resistance. The anti-bacterial actions of the AgNPs and the lincomycin as single entities and as part of the combined mixture of the AgNPs-lincomycin showed improved anti-bacterial biological activity in the and microorganisms in comparison to the AgNPs and lincomycin alone. The comparison of the anti-biofilm formation tendency, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) suggested additive effects of the AgNPs and lincomycin combination co-delivery. The AgNPs' MIC at 100 μg/mL and MBC at 100 μg/mL for both and , respectively, together with the AgNPs-lincomycin mixture MIC at 100 + 12.5 μg/mL for and 50 + 12.5 μg/mL for , confirmed the efficacy of the mixture. The growth curve test showed that the AgNPs required 90 min to kill both bacterial isolates. The freshly prepared and well-characterized AgNPs, important for the antioxidant activity levels of the AgNPs material, showed radical scavenging potential that increased with the increasing concentrations. The DPPH's best activity concentration, 100 μg/mL, which is also the best concentration exhibiting the highest anti-bacterial zone inhibition, was chosen for evaluating the combined effects of the antibiotic, lincomycin, and the AgNPs. Plausible genotoxic effects and the roles of AgNPs were observed through decreased gene expressions in the and gene expressions in the .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774316 | PMC |
http://dx.doi.org/10.3390/antibiotics11121791 | DOI Listing |
BMC Microbiol
January 2025
Department of Internal Medicine and Infectious Diseases (Infectious Diseases), Faulty of Veterinary Medicine, Cairo University, Giza, Egypt.
Background: The excessive use of antibiotics is a major contributor to the global issue of antimicrobial resistance (AMR), a significant threat to human and animal health. Hence, assessing new strategies for managing Multi-Drug Resistant (MDR) microorganisms is vital. In this study, the use of mechanically isolated mature adipose cells (MIMACs) and their lysate (Adipolysate) as a new sustainable antimicrobial agent was assessed against Methicillin-resistant Staphylococcus aureus (MRSA).
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Catalytic Applications Laboratory, Department of Chemistry, School of Basic Sciences, Faculty of Science, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India. Electronic address:
In the present study, biopolymeric Schiff base (SB) ligands were synthesized from chitosan and isatin. Consequently, their earth abundant transition metal complexes of cobalt and copper were synthesized. All compounds were extensively characterized using FTIR and UV spectroscopy, thermo-gravimetric (TG) analysis, X-ray powder diffraction (XRD) and FESEM (field emission scanning electron microscopy).
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
Since its discovery in the bacterium Chromobacterium violaceum, violacein-a striking purple pigment-has garnered significant interest due to its promising applications in the food and pharmaceutical industries. Violacein exhibits a range of pharmacological properties, including anti-inflammatory, anticancer, antibacterial, and antiparasitic effects, yet its complete molecular mechanisms are still being elucidated. Its mechanisms of action likely involve complex interactions with cellular receptors, signaling pathways, and specific molecular targets.
View Article and Find Full Text PDFWest Afr J Med
September 2024
Medical Microbiology & Parasitology Department, University of Ilorin, Ilorin, Nigeria. Email:
Background: Neonatal sepsis (NNS) is a known cause of morbidity and mortality especially in developing countries. The global resistance scourge may worsen the management outcomes of NNS. This study aims to determine the current profile of bacteriological agents of NNS, their resistance status and associated mortality in our setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!