The sarco/endoplasmic reticulum Ca-ATPase (SERCA) is a P-type ion pump that transports Ca from the cytosol into the endoplasmic/sarcoplasmic reticulum (ER/SR) in most mammalian cells. It is critically important in muscle, facilitating relaxation and enabling subsequent contraction. Increasing SERCA expression or specific activity can alleviate muscle dysfunction, most notably in the heart, and we seek to develop small-molecule drug candidates that activate SERCA. Therefore, we adapted an NADH-coupled assay, measuring Ca-dependent ATPase activity of SERCA, to high-throughput screening (HTS) format, and screened a 46,000-compound library of diverse chemical scaffolds. This HTS platform yielded numerous hits that reproducibly alter SERCA Ca-ATPase activity, with few false positives. The top 19 activating hits were further tested for effects on both Ca-ATPase and Ca transport, in both cardiac and skeletal SR. Nearly all hits increased Ca uptake in both cardiac and skeletal SR, with some showing isoform specificity. Furthermore, dual analysis of both activities identified compounds with a range of effects on Ca-uptake and ATPase, which fit into distinct classifications. Further study will be needed to identify which classifications are best suited for therapeutic use. These results reinforce the need for robust secondary assays and criteria for selection of lead compounds, before undergoing HTS on a larger scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776381PMC
http://dx.doi.org/10.3390/biom12121789DOI Listing

Publication Analysis

Top Keywords

cardiac skeletal
8
serca
6
large-scale high-throughput
4
high-throughput screen
4
screen modulators
4
modulators serca
4
activity
4
serca activity
4
activity sarco/endoplasmic
4
sarco/endoplasmic reticulum
4

Similar Publications

Genetic characterization of diagnostic epitopes of cardiac troponin I in African rhinoceros.

J Vet Diagn Invest

December 2024

Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, Onderstepoort, South Africa.

African rhinoceros undergo chemical immobilization and prolonged transport during translocations for conservation purposes and, hence, experience several pathophysiologic changes, including skeletal muscle injury. Potential concurrent myocardial injury has not been investigated due to a lack of validated immunoassays. We aimed to use inferred cardiac troponin I (cTnI) amino acid sequences of southern white () and southern-central black () rhinoceros to assess the potential usefulness of several commercial cTnI immunoassays for detecting cTnI in African rhinoceros.

View Article and Find Full Text PDF

Fatty acid binding protein 4 (FABP4) is highly expressed in adipocytes. Lipolysis, caused by an elevated adrenergic input, has been suggested to contribute to elevated serum FABP4 levels in patients with cardiovascular diseases. However, the relationship between the serum FABP4 and efferent sympathetic nerve activity remains poorly understood.

View Article and Find Full Text PDF

Background: Thalassemia is a hemoglobinopathy-associated genetic disease resulting due to defective synthesis of globin chains, causing defects in the skeletal and oral structures.

Aim: This cross-sectional study was designed to analyze the prevalence of dental caries, oral health status, malocclusion status, and dental treatment needs in thalassemic children.

Materials And Methods: Institutional Ethical committee clearance was obtained before starting the study.

View Article and Find Full Text PDF

Introduction: Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle weakness and eventual death due to cardiomyopathy or respiratory complications. Currently, there is no cure for DMD, with standard treatments primarily focusing on symptom management. Using immunosuppressive measures and optimized vector designs allow for gene therapies to better address the underlying genetic cause of the disease.

View Article and Find Full Text PDF

Introduction/aims: Skeletal muscle magnetic resonance imaging (MRI) is a validated noninvasive tool to assess Duchenne muscular dystrophy (DMD) progression. There is interest in finding DMD biomarkers that decrease the burden of clinical trial participation, such as wearable devices. Our aim was to evaluate the relationship between activity, via accelerometry, and skeletal muscle MRI, particularly T mapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!