Multifunctional, integrated, and reusable operating platforms are highly sought after in biochemical analysis and detection systems. In this study, we demonstrated a novel detachable, reusable acoustic tweezer manipulation platform that is flexible and versatile. The free interchangeability of different detachable microchannel devices on the acoustic tweezer platform was achieved by adding a waveguide layer (glass) and a coupling layer (polydimethylsiloxane (PDMS) polymer film). We designed and demonstrated the detachable multifunctional acoustic tweezer platform with three cell manipulation capabilities. In Demo I, the detachable acoustic tweezer platform is demonstrated to have the capability for parallel processing and enrichment of the sample. In Demo II, the detachable acoustic tweezer platform with capability for precise cell alignment is demonstrated. In Demo III, it was demonstrated that the detachable acoustic tweezer platform has the capability for the separation and purification of cells. Through experiments, our acoustic tweezer platform has good acoustic retention ability, reusability, and stability. More capabilities can be expanded in the future. It provides a simple, economical, and multifunctional reusable operating platform solution for biochemical analysis and detection systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775593 | PMC |
http://dx.doi.org/10.3390/bios12121179 | DOI Listing |
Adv Mater Technol
September 2024
Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA.
Tweezers based on optical, electric, magnetic, and acoustic fields have shown great potential for contactless object manipulation. However, current tweezers designed for manipulating millimeter-sized objects such as droplets, particles, and small animals, exhibit limitations in translation resolution, range, and path complexity. Here, we introduce a novel acoustic vortex tweezers system, which leverages a unique airborne acoustic vortex end effector integrated with a three degree-of-freedom (DoF) linear motion stage, for enabling contactless, multi-mode, programmable manipulation of millimeter-sized objects.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
School of Microelectronics, Xidian University, Xi'an 710071, China.
Microsyst Nanoeng
November 2024
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
Laboratory automation technologies have revolutionized biomedical research. However, the availability of automation solutions at the single-cell level remains scarce, primarily owing to the inherent challenges of handling cells with such small dimensions in a precise, biocompatible manner. Here, we present a single-cell-level laboratory automation solution that configures various experiments onto standardized, microscale test-tube matrices via our precise ultrasonic liquid sample ejection technology, known as PULSE.
View Article and Find Full Text PDFMicrosyst Nanoeng
November 2024
Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
Advanced biofabrication techniques can create tissue-like constructs that can be applied for reconstructive surgery or as in vitro three-dimensional (3D) models for disease modeling and drug screening. While various biofabrication techniques have recently been widely reviewed in the literature, acoustics-based technologies still need to be explored. The rapidly increasing number of publications in the past two decades exploring the application of acoustic technologies highlights the tremendous potential of these technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!