Development of Novel Lipid-Based Formulations for Water-Soluble Vitamin C versus Fat-Soluble Vitamin D3.

Bioengineering (Basel)

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.

Published: December 2022

The aim of this study was to develop a facile and novel lipid-based formulation of vitamin C and vitamin D3. Liposomes loaded with vitamin C and D3 were characterized using transmission electron microscopy (TEM) and zeta potential measurements for evaluating morphology, particle size and physical stability. HPLC was employed to quantify the content of vitamin C and vitamin D3 in their liposomal forms. The UHPLC analysis of the lipid-based vitamin formulation is an easy and rapid method for the characterization as well as the quantification of all components. In addition, encapsulation efficiency, vitamin loading and stability analysis were performed by the UHPLC method, in order to evaluate the reliability of the optimized lipid-based formulation. The TEM results provided key support for the core type of liposome structure in the formulations, whereas the HPLC results indicated that the liposomal vitamin C and D3 systems were homogeneous, and did not undergo phase separation. Taken together, the results demonstrate that liposomal encapsulated vitamins (vitamin C and D3) possess a unilamellar vesicle morphology with uniform particle size, despite differences in the hydrophile-lipophile profiles of the vitamins. The highly efficient encapsulation properties of such liposomal constructs are proposed to contribute to enhanced vitamin bioavailability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774173PMC
http://dx.doi.org/10.3390/bioengineering9120819DOI Listing

Publication Analysis

Top Keywords

vitamin
12
novel lipid-based
8
lipid-based formulation
8
vitamin vitamin
8
particle size
8
development novel
4
lipid-based
4
lipid-based formulations
4
formulations water-soluble
4
water-soluble vitamin
4

Similar Publications

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Optimization of Tratt pomace fermentation process and the effects of mono- and mixed culture fermentation on its chemical composition.

Front Nutr

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.

Background: Tratt pomace (RRTP) contains valuable components like polyphenols and polysaccharides, which have high utilization value. Fermentation is an effective technique for creating beneficial nutrients that can improve the taste, appearance, and nutritional benefits of foods. Nevertheless, there is a lack of research on the alterations in chemical composition of RRTP during fermentation.

View Article and Find Full Text PDF

E-cigarette or vaping product use-associated lung injury (EVALI) is a potentially severe acute interstitial lung disease primarily observed in the United States, with sporadic cases reported in Europe. EVALI, though rare, could be susceptible to under-diagnosis due to limited awareness and diagnostic suspicion. We present a case of a 19-year-old male in Denmark diagnosed with severe EVALI.

View Article and Find Full Text PDF

Coronary artery ectasia (CAE) is an abnormal dilatation of coronary artery segments, often linked with atherosclerosis. This report discusses two cases of CAE presenting as acute coronary syndrome. A 36-year-old man had proximal blockage in the left circumflex artery (LCx) and ectasia in the obtuse marginal artery and left anterior descending artery (LAD), while a 53-year-old male smoker had an ectatic LAD with a substantial thrombus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!