Transcriptional and translational control are key determinants of gene expression, however, to what extent these two processes can be collectively coordinated is still poorly understood. Here, we use Nanopore long-read sequencing and cap analysis of gene expression (CAGE-seq) to document the landscape of 5' and 3' untranslated region (UTR) isoforms and transcription start sites of epidermal stem cells, wild-type keratinocytes and squamous cell carcinomas. Focusing on squamous cell carcinomas, we show that a small cohort of genes with alternative 5'UTR isoforms exhibit overall increased translational efficiencies and are enriched in ribosomal proteins and splicing factors. By combining polysome fractionations and CAGE-seq, we further characterize two of these UTR isoform genes with identical coding sequences and demonstrate that the underlying transcription start site heterogeneity frequently results in 5' terminal oligopyrimidine (TOP) and pyrimidine-rich translational element (PRTE) motif switches to drive mTORC1-dependent translation of the mRNA. Genome-wide, we show that highly translated squamous cell carcinoma transcripts switch towards increased use of 5'TOP and PRTE motifs, have generally shorter 5'UTRs and expose decreased RNA secondary structures. Notably, we found that the two 5'TOP motif-containing, but not the TOP-less, RPL21 transcript isoforms strongly correlated with overall survival in human head and neck squamous cell carcinoma patients. Our findings warrant isoform-specific analyses in human cancer datasets and suggest that switching between 5'UTR isoforms is an elegant and simple way to alter protein synthesis rates, set their sensitivity to the mTORC1-dependent nutrient-sensing pathway and direct the translational potential of an mRNA by the precise 5'UTR sequence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957725PMC
http://dx.doi.org/10.1038/s41388-022-02578-2DOI Listing

Publication Analysis

Top Keywords

squamous cell
16
switches drive
8
translational efficiencies
8
gene expression
8
transcription start
8
cell carcinomas
8
5'utr isoforms
8
cell carcinoma
8
translational
5
monitoring 5'utr
4

Similar Publications

Transcriptomic Profiles in Nasal Epithelium and Asthma Endotypes in Youth.

JAMA

January 2025

Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania.

Importance: T helper 2 (T2) cells and T helper 17 (T17) cells are CD4+ T cell subtypes involved in asthma. Characterizing asthma endotypes based on these cell types in diverse groups is important for developing effective therapies for youths with asthma.

Objective: To identify asthma endotypes in school-aged youths aged 6 to 20 years by examining the distribution and characteristics of transcriptomic profiles in nasal epithelium.

View Article and Find Full Text PDF

Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control.

Front Med

January 2025

Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.

Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy.

View Article and Find Full Text PDF

Introduction: In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization.

Areas Covered: 1.

View Article and Find Full Text PDF

Unlabelled: Respiratory epithelial cells can survive direct infection by influenza viruses, and the long-term consequences of that infection have been characterized in a subset of proximal airway cell types. The impact on the cells that survive viral infection in the distal lung epithelia, however, is much less well-characterized. Utilizing a Cre-expressing influenza B virus (IBV) and a lox-stop-lox tdTomato reporter mouse model, we identified that alveolar type 2 (AT2) pneumocytes, a progenitor cell type in the distal lung, can survive viral infection.

View Article and Find Full Text PDF

Neuroimmune signalling pathways in chronic rhinosinusitis with nasal polyps.

Curr Opin Allergy Clin Immunol

February 2025

Specialist Allergy and Clinical Immunology, Rhinology Section, Royal National ENT and Eastman Dental Hospitals, University College London Hospitals NHS Foundation Trust, London, UK.

Purpose Of Review: To evaluate the role of neuroimmune signalling pathways in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP).

Recent Findings: The sinonasal mucosa is densely infiltrated by immune cells and neuronal structures that share an intimate spatial relationship within tissue compartments. Together, such neuroimmune units play a critical role in airway defence and homeostatic function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!