Characterizing sources and targets of illumination in living tissue is challenging. Here we show that spatial distributions of light in tissue can be mapped by using magnetic resonance imaging (MRI) in the presence of photosensitive nanoparticle probes. Each probe consists of a reservoir of paramagnetic molecules enclosed by a liposomal membrane incorporating photosensitive lipids. Incident light causes the photoisomerization of the lipids and alters hydrodynamic exchange across the membrane, thereby affecting longitudinal relaxation-weighted contrast in MRI. We injected the nanoparticles into the brains of live rats and used MRI to map responses to illumination profiles characteristic of widely used applications of photostimulation, photometry and phototherapy. The responses deviated from simple photon propagation models and revealed signatures of light scattering and nonlinear responsiveness. Paramagnetic liposomal nanoparticles may enable MRI to map a broad range of optical phenomena in deep tissue and other opaque environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232483PMC
http://dx.doi.org/10.1038/s41551-022-00982-3DOI Listing

Publication Analysis

Top Keywords

mri map
8
mapping light
4
light distribution
4
tissue
4
distribution tissue
4
tissue mri-detectable
4
mri-detectable photosensitive
4
photosensitive liposomes
4
liposomes characterizing
4
characterizing sources
4

Similar Publications

Objective: To provide up-to-date European Society of Urogenital Radiology (ESUR) guidelines for staging and follow-up of patients with ovarian cancer (OC).

Methods: Twenty-one experts, members of the female pelvis imaging ESUR subcommittee from 19 institutions, replied to 2 rounds of questionnaires regarding imaging techniques and structured reporting used for pre-treatment evaluation of OC patients. The results of the survey were presented to the other authors during the group's annual meeting.

View Article and Find Full Text PDF

Introduction: Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.

View Article and Find Full Text PDF

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching.

View Article and Find Full Text PDF

Purpose: Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment.

Method: Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!