The regioselective functionalization of C remains challenging, while the enantioselective functionalization of C is difficult to explore due to the need for complex chiral tethers or arduous chromatography. Metal-organic cages have served as masks to effect the regioselective functionalization of C. However, it is difficult to control the stereochemistry of the resulting fullerene adducts through this method. Here we report a means of defining up to six stereocentres on C, achieving enantioselective fullerene functionalization. This method involves the use of a metal-organic cage built from a chiral formylpyridine. Fullerenes hosted within the cavity of the cage can be converted into a series of C adducts through chemo-, regio- and stereo-selective Diels-Alder reactions with the edges of the cage. The chiral formylpyridine ultimately dictates the stereochemistry of these chiral fullerene adducts without being incorporated into them. Such chiral fullerene adducts may become useful in devices requiring circularly polarized light manipulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41557-022-01103-y | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
Carboncones and fullerenes are exemplary π-conjugated carbon nanomaterials with unsaturated, positively curved surfaces, enabling the attachment of atoms or functional groups to enhance their physicochemical properties. However, predicting and understanding the addition patterns in functionalized carboncones and fullerenes are extremely challenging due to the formidable complexity of the regioselectivity exhibited in the adducts. Existing predictive models fall short in systems where the carbon molecular framework undergoes severe distortion upon high degrees of addition.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
Department of Chemistry, Nanoscale Sciences and Technology Institute, Nanocarbon R&D Institute, Wonkwang University, Iksan, Jeonbuk 54538, R.O.K.
We studied the hydroboration of the C fullerene using both B3LYP-D3(BJ)/6-311G(d,p) and M06-2X-D3/6-311G(d,p) levels of theory, incorporating the empirical dispersion interaction, and Fukui index calculations. Potential energy surfaces (PESs) and Gibbs free energy surfaces (GFESs) were calculated for the pathways from four BH adducts (located at the , , , and sites) on the C to eight products formed by the 1,2-addition of BH across the four [6,6]-ring fused bonds (, , , and ) and across the two [5,6]-ring fused bonds ( and ). These pathways are two-step consecutive reactions.
View Article and Find Full Text PDFNano Lett
October 2024
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
Manipulating the symmetry of fullerene-based low-dimensional materials is crucial to the development of electronic devices and modern nonvolatile memories. However, there have been few reports on studying the physicochemical properties of fullerene and its derivatives by controlling the symmetries. Herein, we demonstrate ferroelectricity in ScN@-C-Pd/Pt adducts with relatively strong spontaneous polarization.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
[2]Rotaxanes offer unique opportunities for studying and modulating charge separation and energy transfer, because the mechanical bond allows the robust, yet spatially dynamic tethering of photoactive groups. In this work, we synthesized [2]rotaxane triads comprising a central (aza)[10]CPP⊃C bis-adduct complex and two zinc porphyrin stoppers to address how the movable nanohoop affects light-induced charge separation and energy transfer between the rotaxane subcomponents. We found that neither the parent nanohoop [10]CPP nor its electron-deficient analogue aza[10]CPP actively participate in charge separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!