A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The electric field cavity array effect of 2D nano-sieves. | LitMetric

The electric field cavity array effect of 2D nano-sieves.

Nat Commun

State Key Laboratory of Power Transmission Equipment & System Security and New Technology, and the School of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, 400044, Chongqing City, P. R. China.

Published: December 2022

For the upsurge of high breakdown strength ([Formula: see text]), efficiency ([Formula: see text]), and discharge energy density ([Formula: see text]) of next-generation dielectrics, nanocomposites are the most promising candidates. However, the skillful regulation and application of nano-dielectrics have not been realized so far, because the mechanism of enhanced properties is still not explicitly apprehended. Here, we show that the electric field cavity array in the outer interface of nanosieve-substrate could modulate the potential distribution array and promote the flow of free charges to the hole, which works together with the intrinsic defect traps of active CoO surface to trap and absorb high-energy carriers. The electric field and potential array could be regulated by the size and distribution of mesoporous in 2-dimensional nano-sieves. The poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposites film exhibits an [Formula: see text] of 803 MV m with up to 80% enhancement, accompanied by high [Formula: see text] = 41.6 J cm and [Formula: see text]≈ 90%, outperforming the state-of-art nano-dielectrics. These findings enable deeper construction of nano-dielectrics and provide a different way to illustrate the intricate modification mechanism from macro to micro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780201PMC
http://dx.doi.org/10.1038/s41467-022-35623-5DOI Listing

Publication Analysis

Top Keywords

[formula text]
16
electric field
12
field cavity
8
cavity array
8
[formula
6
array
4
array nano-sieves
4
nano-sieves upsurge
4
upsurge high
4
high breakdown
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!