Discrete spin crossover (SCO) heteronuclear cages are a rare class of materials which have potential use in next-generation molecular transport and catalysis. Previous investigations of cubic cage [Fe Pd L ] constructed using semi-rigid metalloligands, found that Fe centers of the cage did not undergo spin transition. In this work, substitution of the secondary metal center at the face of the cage resulted in SCO behavior, evidenced by magnetic susceptibility, Mössbauer spectroscopy and single crystal X-ray diffraction. Structural comparisons of these two cages shed light on the possible interplay of inter- and intramolecular interactions associated with SCO in the Ni analogue, 1 ([Fe Ni L (CH CN) ] ). The distorted octahedral coordination environment, as well as the occupation of the CH CN in the Ni axial positions of 1, prevented close packing of cages observed in the Pd analogue. This led to offset, distant packing arrangements whereby important areas within the cage underwent dramatic structural changes with the exhibition of SCO.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202203742DOI Listing

Publication Analysis

Top Keywords

spin crossover
8
secondary metal
8
cubic cage
8
cage
5
crossover induced
4
induced changing
4
changing identity
4
identity secondary
4
metal ion
4
ion face-centered
4

Similar Publications

Metal-Organic Frameworks (MOFs) attract attention for their intrinsic porosity, large surface area, and functional versatility. To fully utilize their potential in applications requiring precise control at smaller scales, it is essential to overcome challenges associated with their bulk form. This is particularly difficult for 3D MOFs with spin crossover (SCO) behavior, which undergo a reversible transition between high-spin and low-spin states in response to external stimuli.

View Article and Find Full Text PDF

Chiral effects at the metal center in Fe(III) spin crossover coordination salts.

J Phys Condens Matter

December 2024

Department of Physics and Astronomy, University of Nebraska-Lincoln, Jorgenesen Hall, 855 North 16th Street, Lincoln, Nebraska, 68588-0299, UNITED STATES.

Evidence of chirality was observed at the Fe metal center in Fe(III) spin crossover coordination salts [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] from X-ray absorption spectroscopy at the Fe 2pcore threshold. Based on the circularly polarized X-ray absorption data, the X-ray natural circular dichroism seen [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] is far stronger than seen for [Fe(qsal)Cl] suggesting this natural circular dichroism signature is a ligand effect rather than a result of just a loss of octahedral symmetry on the Fe core. The larger the chiral effects in the Fe 2p core to bound X-ray absorption, the greater the perturbation of the Fe 2pto 2pspin-orbit splitting seen in the X-ray absorption spectra.

View Article and Find Full Text PDF

Interplay Between Spinmerism and Spin-Orbit Coupling for a d2 Metal Ion in an Open-Shell Ligand Field.

Chemphyschem

December 2024

Laboratoire de Chimie Quantique, Universit� de Strasbourg, Department of Chemistry, 4 rue Blaise Pascal, 67000, Strasbourg, FRANCE.

Recent, theoretical studies have shown that placing a spin-crossover ion in a field of radical ligands can induce local superpositions of local spin states (see Ref.[1,2]). This phenomenon, termed spinmerism, raises questions about its stability when spin-orbit coupling is included.

View Article and Find Full Text PDF

Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them has not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 395 feasible Fe and Co mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of spin crossover at moderate force, and we identify 155 Fe and Co spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition ().

View Article and Find Full Text PDF

Experimental Spin State Determination of Iron(II) Complexes by Hirshfeld Atom Refinement.

Chemistry

December 2024

RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen, Institute of Inorganic Chemistry, Landoltweg 1a, 52074, Aachen, GERMANY.

In this study, we present the first experimental determination of the spin state of transition metal complexes by using Hirshfeld Atom Refinement. For the demonstration, the two iron(II) complexes, (NH4)2Fe(SO4)2*6H2O and [Fe(pic)3]Cl2*EtOH were investigated. The method involves the refinement using wavefunctions of different spin multiplicity and comparison against experimental diffraction data by means of refinement indicators and residual electron density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!