Liquid-liquid phase separation (LLPS) in macromolecular solutions (e.g., coacervation) is relevant both to technology and to the process of mesoscale structure formation in cells. The LLPS process is characterized by a phase diagram, i.e., binodal lines in the temperature/concentration plane, which must be quantified to predict the system's behavior. Experimentally, this can be difficult due to complications in handling the dense macromolecular phase. Here, we develop a method for accurately quantifying the phase diagram without direct handling: We confine the sample within micron-scale, water-in-oil emulsion droplets and then use precision fluorescent imaging to measure the volume fraction of the condensate within the droplet. We find that this volume fraction grows linearly with macromolecule concentration; thus, by applying the lever rule, we can directly extract the dense and dilute binodal concentrations. We use this approach to study a model LLPS system of self-assembled, fixed-valence DNA particles termed nanostars (NSs). We find that temperature/concentration phase diagrams of NSs display, with certain exceptions, a larger co-existence regime upon increasing salt or valence, in line with expectations. Aspects of the measured phase behavior validate recent predictions that account for the role of valence in modulating the connectivity of the condensed phase. Generally, our results on NS phase diagrams give fundamental insight into limited-valence phase separation, while the method we have developed will likely be useful in the study of other LLPS systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0130808 | DOI Listing |
J Colloid Interface Sci
December 2024
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:
Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
High dielectric constants with less dielectric loss composites is highly demandable for technological advancements across various fields, including energy storage, sensing, and telecommunications. Their significance lies in their ability to enhance the performance and efficiency of a wide range of devices and systems. In this work, the dielectric performance of graphene oxide (GO) reinforced plasticized starch (PS) nanocomposites (PS/GO) for different concentrations of GO nanofiller was studied.
View Article and Find Full Text PDFLangmuir
January 2025
Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
Inclusion complexation of the sunscreen ingredient avobenzone (AVB) with β-cyclodextrin (β-CD) was investigated to improve its aqueous solubility and photostability; another ultraviolet (UV) filter, oxybenzone (OXB), and the phytochemical antioxidant curcumin (CUR) served as a comparison. In this study, the 1-octanol/water partition coefficients, acid dissociation constants, phase-solubility diagrams with β-CD, and ultraviolet-visible (UV-vis) spectral changes induced by UVA1 (365 nm) irradiation were evaluated. β-CD at concentrations 50-100 times that of AVB most effectively protected the photostability of AVB.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania.
Olmesartan medoxomil (OLM) is the prodrug of olmesartan, an angiotensin II type 1 receptor blocker that has antihypertensive and antioxidant activities and renal protective properties. It exhibits low water solubility, which leads to poor bioavailability and limits its clinical potential. To improve the solubility of OLM, a host-guest inclusion complex (IC) between heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) and the drug substance was obtained.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.
This paper introduces a novel contactless single-chip detector that utilizes impedance-to-digital conversion technology to measure impedance in the microfluidic channel or capillary format analytical device. The detector is designed to operate similarly to capacitively coupled contactless conductivity detectors for capillary electrophoresis or chromatography but with the added capability of performing frequency sweeps up to 200 kHz. At each recorded data point, impedance and phase-shift data can be extracted, which can be used to generate impedance versus frequency plots, or phase-shift versus frequency plots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!