Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mass spectrometric analysis of anionic products that result from interacting Ir with HO shows the efficient generation of [Ir(HO)] complexes and IrO molecular anions. Anion photoelectron spectra of [Ir(HO)], formed under various source conditions, exhibit spectral features that are due to three different forms of the complex: the solvated anion-molecule complex, Ir(HO), as well as the intermediates, [H-Ir-OH] and [H-Ir-O], where one and two O-H bonds have been broken, respectively. The measured and calculated vertical detachment energy values are in good agreement and, thus, support identification of all three types of isomers. The calculated reaction pathway shows that the overall reaction Ir + HO → IrO + H is exothermic. Two minimum energy crossing points were found, which shuttle intermediates and products between singlet and triplet potential surfaces. This study presents the first example of water activation and splitting by single Ir anions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0130277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!