Empagliflozin Improves the MicroRNA Signature of Endothelial Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction and Diabetes.

J Pharmacol Exp Ther

Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.).

Published: January 2023

Endothelial dysfunction represents a key mechanism underlying heart failure with preserved ejection fraction (HFpEF), diabetes mellitus (DM), and frailty. However, reliable biomarkers to monitor endothelial dysfunction in these patients are lacking. In this study, we evaluated the expression of a panel of circulating microRNAs (miRs) involved in the regulation of endothelial function in a population of frail older adults with HFpEF and DM treated for 3 months with empagliflozin, metformin, or insulin. We identified a distinctive pattern of miRs that were significantly regulated in HFpEF patients compared to healthy controls and to HFpEF patients treated with the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin. Three miRs were significantly downregulated (miR-126, miR-342-3p, and miR-638) and two were significantly upregulated (miR-21 and miR-92) in HFpEF patients compared to healthy controls. Strikingly, two of these miRs (miR-21 and miR-92) were significantly reduced in HFpEF patients after the 3-month treatment with empagliflozin, whereas no significant differences in the profile of endothelial miRs were detected in patients treated with metformin or insulin. Taken together, our findings demonstrate for the first time that specific circulating miRs involved in the regulation of endothelial function are significantly regulated in frail HFpEF patients with DM and in response to SGLT2 inhibition. SIGNIFICANCE STATEMENT: We have identified a novel microRNA signature functionally involved in the regulation of endothelial function that is significantly regulated in frail patients with HFpEF and diabetes. Moreover, the treatment with the SGLT2 inhibitor empagliflozin caused a modification of some of these microRNAs in a direction that was opposite to what observed in HFpEF patients, indicating a rescue of endothelial function. Our findings are relevant for clinical practice inasmuch as we were able to establish novel biomarkers of disease and response to therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827502PMC
http://dx.doi.org/10.1124/jpet.121.001251DOI Listing

Publication Analysis

Top Keywords

hfpef patients
24
endothelial function
16
endothelial dysfunction
12
involved regulation
12
regulation endothelial
12
patients
10
hfpef
9
microrna signature
8
endothelial
8
dysfunction patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!