Precisely controlling the selectivity of nanocatalysts has always been a hot topic in heterogeneous catalysis but remains difficult owing to their complex and inhomogeneous catalytic sites. Herein, an effective strategy to regulate the chemoselectivity of Pd nanocatalysts for selective hydrogenation reactions by inserting single-atom Zn into Pd nanoparticles is reported. Taking advantage of the tannic acid coating-confinement strategy, small-sized Pd nanoparticles with inserted single-atom Zn are obtained on the O-doped carbon-coated alumina. Compared with the pure Pd nanocatalyst, the Pd nanocatalyst with single-atom Zn insertion exhibits prominent selectivity for the hydrogenation of p-iodonitrobenzene to afford the hydrodeiodination product instead of nitro hydrogenation ones. Further computational studies reveal that the single-atom Zn on Pd nanoparticles strengthens the adsorption of the nitro group to avoid its reduction and increases the d-band center of Pd atoms to facilitate the reduction of the iodo group, which leads to enhanced selectivity. This work provides new guidelines to tune the selectivity of nanocatalysts with guest single-atom sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202206052 | DOI Listing |
ACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.
The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.
View Article and Find Full Text PDFSci Rep
December 2024
Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
In this study, we present the synthesis of a silver nanocomposite by utilizing a β-cyclodextrin (βCD) polymer anchored onto the surface of magnetic g-CN (referred to as g-CN-FeO/βCD-Ag). The structure and composition of the g-CN-FeO/βCD-Ag nanocomposite were thoroughly characterized using various techniques, including FT-IR, FE-SEM-EDS, TEM, TGA, XRD, ICP, and VSM. This catalytic system exhibited excellent selectivity in reducing nitro groups, even in the presence of other reactive functional groups, resulting in high yields ranging from 85 to 98%.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Materials Polymer Laboratory, Macromolecular Chemistry Department, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria.
Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China. Electronic address:
The selective hydrogenation of nitrile compounds represents a pivotal area of research within both industrial and academic catalysis. In this study, we prepared Ni-Cu bimetallic catalysts through a co-deposition-crystallization sequence, aimed at the efficient production of primary and secondary amines. The enhanced selectivity for primary amines is attributed to the downshift of the d-band center of NiCu, which weakens the adsorption of key imine intermediates.
View Article and Find Full Text PDFACS Nano
December 2024
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
Alloy nanocatalysts exhibit enhanced activity, selectivity, and stability mainly due to their versatile phases and atomic structures. However, nanocatalysts' "real" functional structures may vary from their as-synthesized status due to the structural and chemical changes during the activation and reaction conditions. Herein, we studied the activated CuPd/CeO nanocatalysts under the CO oxidation reaction featuring an atomic-scale phase separation process, resulting in a notable "hysteresis" in catalyst performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!