This work focusses on developing a hybrid enzyme biofuel cell-based self-powered biosensor with appreciable stability and durability using murine leukemia fusion gene fragments (tDNA) as a model analyte. The cell consists of a Ti C T /multiwalled carbon nanotube/gold nanoparticle/glucose oxidase bioanode and a Zn/Co-modified carbon nanotube cathode. The bioanode uniquely exhibits strong electron transfer ability and a high surface area for the loading of 1.14 × 10  mol cm glucose oxidase to catalyze glucose oxidation. Meanwhile, the abiotic cathode with a high oxygen reduction reaction activity negates the use of conventional bioenzymes as catalysts, which aids in extending the stability and durability of the sensing system. The biosensor offers a 0.1 fm-1 nm linear range and a detection limit of 0.022 fm tDNA. Additionally, the biosensor demonstrates a reproducibility of ≈4.85% and retains ≈87.42% of the initial maximal power density after a 4-week storage at 4 °C, verifying a significantly improved long-term stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202206257DOI Listing

Publication Analysis

Top Keywords

stability durability
8
high-performance hybrid
4
hybrid biofuel
4
biofuel cell
4
cell honeycomb-like
4
honeycomb-like /mwcnt/aunp
4
/mwcnt/aunp bioanode
4
bioanode znco
4
znco @ncnt
4
@ncnt cathode
4

Similar Publications

Development of Triphenylamine Derived Photosensitizers for Efficient Hydrogen Evolution from Water.

Chemistry

January 2025

The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong (P.R. China), 000000, Hong Kong, HONG KONG.

A series of new (donor)₂-donor-π-acceptor (D2-D-π-A) and (acceptor)₂-donor-π-acceptor (A2-D-π-A) organic photosensitizers based on the framework of (Z)-2-cyano-3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylic acid have been synthesized and characterized. By incorporating groups with different electron-donating or withdrawing abilities, such as dibenzothiophene (DBT), dibenzofuran (DBF), and triazine (TA), into the triphenylamine segment, their photophysical properties have been regulated.  Theoretical calculations were used to explore how various donor-acceptor combinations influence their hydrogen production performance.

View Article and Find Full Text PDF

Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. Unfortunately, as thermoset polymers, polyurethanes lack a clear path for recycling and repurposing, creating a sustainability issue. Herein, using dynamic depolymerization, we demonstrate a simple one-pot synthesis for preparation of an upcycled polyurethane grafted graphene material (PU-GO).

View Article and Find Full Text PDF

High-Density CuBiO Photocathodes Using Well-Textured Buffer Layers and Their Unassisted Solar Hydrogen Production Performances.

Small

January 2025

School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.

Solar hydrogen production using photoelectrochemical (PEC) cells requires the selection of cost-effective materials with high photoactivity and durability. CuBiO photocathodes possess an appropriate bandgap for efficient hydrogen production. However, their performance is limited by poor charge transport and interface voids formed due to the porous structure during annealing, which complicates the deposition of passivation overlayers.

View Article and Find Full Text PDF

Objective: Aortic valve repair/sparing have been established as effective treatments for aortic regurgitation and/or aortic aneurysms. However, concerns remain regarding long-term durability, reproducibility, and patient selection. This study aims to asses long-term clinical and echocardiographic outcomes, with a focus on aortic regurgitation grade and left ventricular ejection fraction evolution, in adults undergoing these procedures.

View Article and Find Full Text PDF

Objective: This study aims to examine color properties of repairs made with various composites on restorations produced through additive-manufactured resin composites (AM-RC) and zirconia (AM-Z) or subtractive manufacturing (SM) after coffee thermocycling (CTC).

Materials And Methods: Disk-shaped specimens (Ø10 × 2 mm; N = 120) were fabricated using six different material groups: additively manufactured resin composite (AM-RC) materials (Crowntec [C], NextDent [ND]), additively manufactured zirconia (AM-Z) materials (Lithoz [LI], INNI-Cera [IN]), and subtractively manufactured (SM) materials (CEREC Tessera [ALD], Vita Enamic [EN]). Subsequently, each group was further subdivided into two subgroups (n = 10) based on the type of repair using two different composites resins: Clearfil Majesty Posterior (CL) (n = 60) and Filtek Z350 (FZ) (n = 60).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!