Simple lignin-based, light-driven shape memory polymers with excellent mechanical properties and wide range of glass transition temperatures.

Int J Biol Macromol

Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

Published: February 2023

Lignin is the most abundant biomass source of aromatic hydrocarbons but, at present, is not effectively utilized. The development of simple and efficient methods for producing lignin-based polymers to replace petroleum-based products is an important strategy for promoting environmentally friendly and sustainable materials and controlling carbon emissions. In this work, lignin-based, light-driven shape memory polymers (ELIDs) with improved mechanical properties have been prepared from enzymatic hydrolysis lignin, itaconic acid and 1,12-dodecanediol, without any chemical modification of the lignin. The polymers contain large proportions of lignin (20-40 wt%, designated ELID20 to ELID40) and their mechanical properties are dependent on the lignin content. Maximum tensile strength (46.9 MPa) was achieved with ELID30, maximum elongation at break (93.7 %) was achieved with ELID20 and highest fracture energy (10.75 J cm) was achieved with ELID25. These excellent mechanical properties are accompanied by good thermal stability and a wide range of glass transition temperatures (21.2-157.3 °C), supporting a broad range of applications. The shape fixation rate (R) and shape recovery rate (R) were highest for ELID30 (98.7 % and 97.4 %, respectively). Under 1 sun simulated solar irradiation, ELID20 reached a temperature exceeding the glass transition temperature in 15 s and, under 3 sun simulated solar irradiation, ELID30 reached a temperature of 130 °C and shape recovered in 60 s. The excellent mechanical properties and good light-driven shape memory of ELIDs provide inspiration for the development and utilization of lignin-based polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.098DOI Listing

Publication Analysis

Top Keywords

mechanical properties
20
light-driven shape
12
shape memory
12
excellent mechanical
12
glass transition
12
lignin-based light-driven
8
memory polymers
8
wide range
8
range glass
8
transition temperatures
8

Similar Publications

Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).

View Article and Find Full Text PDF

Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.

View Article and Find Full Text PDF

Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).

View Article and Find Full Text PDF

Purpose: Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes.

Methods: The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed.

View Article and Find Full Text PDF

measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!