Spatial separation of ions in the gas phase, providing information about their size as collisional cross-sections, can readily be achieved through ion mobility. The timsTOF Pro (Bruker Daltonics) series combines a trapped ion mobility device with a quadrupole, collision cell, and a time-of-flight analyzer to enable the analysis of ions at great speed. Here, we show that the timsTOF Pro is capable of physically separating N-glycopeptides from nonmodified peptides and producing high-quality fragmentation spectra, both beneficial for glycoproteomics analyses of complex samples. The glycan moieties enlarge the size of glycopeptides compared with nonmodified peptides, yielding a clear cluster in the mobilogram that, next to increased dynamic range from the physical separation of glycopeptides and nonmodified peptides, can be used to make an effective selection filter for directing the mass spectrometer to analytes of interest. We designed an approach where we (1) focused on a region of interest in the ion mobilogram and (2) applied stepped collision energies to obtain informative glycopeptide tandem mass spectra on the timsTOF Pro:glyco-polygon-stepped collision energy-parallel accumulation serial fragmentation. This method was applied to selected glycoproteins, human plasma- and neutrophil-derived glycopeptides. We show that the achieved physical separation in the region of interest allows for improved extraction of information from the samples, even at shorter liquid chromatography gradients of 15 min. We validated our approach on human neutrophil and plasma samples of known makeup, in which we captured the anticipated glycan heterogeneity (paucimannose, phosphomannose, high mannose, hybrid and complex glycans) from plasma and neutrophil samples at the expected abundances. As the method is compatible with off-the-shelve data acquisition routines and data analysis software, it can readily be applied by any laboratory with a timsTOF Pro and is reproducible as demonstrated by a comparison between two laboratories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853368 | PMC |
http://dx.doi.org/10.1016/j.mcpro.2022.100486 | DOI Listing |
Mol Cell Proteomics
December 2024
Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742. Electronic address:
Detection of trace-sensitive signals is a current challenge in single-cell mass spectrometry (MS) proteomics. Separation prior to detection improves the fidelity and depth of proteome identification and quantification. We recently recognized capillary electrophoresis (CE) electrospray ionization (ESI) for ordering peptides into mass-to-charge (m/z)-dependent series, introducing electrophoresis-correlative (Eco) data-independent acquisition.
View Article and Find Full Text PDFObjective: Ankylosing spondylitis (AS) patients often present with microscopic signs of gut inflammation. We used proteomic techniques to identify the differentially expressed proteins (DEPs) in the colon tissues of patients with AS and patients with gut inflammation, and then used investigated the influence of NMRAL1 protein on inflammatory cytokines to explore its potential role in the pathogenesis of AS and gut inflammation.
Methods: Colonic mucosal tissues were collected from four different groups: healthy individuals (group A), patients with gut inflammation only (group B), patients with AS only (group C), and patients with AS combined with gut inflammation (group D).
Anal Chem
October 2024
Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
Current developments in single-cell mass spectrometry (MS) aim to deepen proteome coverage while enhancing analytical speed to study entire cell populations, one cell at a time. Custom-built microanalytical capillary electrophoresis (μCE) played a critical role in the foundation of discovery single-cell MS proteomics. However, requirements for manual operation, substantial expertise, and low measurement throughput have so far hindered μCE-based single-cell studies on large numbers of cells.
View Article and Find Full Text PDFTalanta
January 2025
Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Nasopharyngeal Carcinoma Clinical Research Center, Guangxi Medical University, Nanning, Guangxi, China. Electronic address:
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with a high propensity for early metastatic spread. Emerging evidence shows that extracellular vesicles (EVs) are key players in cancer metastasis, but their role in NPC metastasis remains poorly understood. We here present the first description of the proteomic and functional profiles of serum-derived circulating small EVs in metastatic NPC patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!