Porous polymer microspheres are employed in biotherapeutics, tissue engineering, and regenerative medicine. Porosity dictates cargo carriage and release that are aligned with the polymer physicochemical properties. These include material tuning, biodegradation, and cargo encapsulation. How uniformity of pore size affects therapeutic delivery remains an area of active investigation. Herein, we characterize six branched aliphatic hydrocarbon-based porogen(s) produced to create pores in single and multilayered microspheres. The porogens are composed of biocompatible polycaprolactone, poly(lactic-co-glycolic acid), and polylactic acid polymers within porous multilayered microspheres. These serve as controlled effective drug and vaccine delivery platforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460474PMC
http://dx.doi.org/10.1016/j.nano.2022.102644DOI Listing

Publication Analysis

Top Keywords

branched aliphatic
8
multilayered microspheres
8
development porous
4
porous layer-by-layer
4
layer-by-layer microsphere
4
microsphere branched
4
aliphatic hydrocarbon
4
hydrocarbon porogens
4
porogens porous
4
porous polymer
4

Similar Publications

Coalbed methane (CBM) reservoir modification based on chemical solvent treatment could change the coal microstructure, which further affects the adsorption capacity and flow characteristics of this clean energy. Coal samples were extracted by tetrahydrofuran (THF), carbon disulfide (CS), and hydrochloric acid (HCl). Low-pressure nitrogen adsorption, carbon dioxide adsorption, Fourier transform infrared spectroscopy, and methane isothermal adsorption test were adopted.

View Article and Find Full Text PDF

Strong anharmonic coupling between vibrational states in polycyclic aromatic hydrocarbons (PAH) produces highly mixed vibrational transitions that challenge the current understanding of the nature of the astronomical mid-infrared PAH emission bands. Traditionally, PAH emission bands have been characterized as either aromatic or aliphatic, and this assignment is used to determine the fraction of aliphatic carbon in astronomical sources. In reality, each of the transitions previously utilized for such an attribution is highly mixed with contributions from both aliphatic and aromatic CH motions as well as non-CH motions such as CC stretches.

View Article and Find Full Text PDF

Molecular characteristics of organic matters in PM associated with upregulation of respiratory virus infection in vitro.

J Hazard Mater

November 2024

State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China. Electronic address:

The extent to which organic matters (OM) in PM affect virus infections and the key organic molecules involved in this process remain unclear. Herein, this study utilized ultra-high resolution mass spectrometry coupled with in vitro experiments to identify the organic molecules associated with respiratory virus infection for the first time. Water-soluble organic matters (WSOM) and water-insoluble organic matters (WIOM) were separated from PM samples collected at the urban area of Guangzhou, China.

View Article and Find Full Text PDF

Molybdenum Complex-Catalyzed -Alkylation of Bulky Primary and Secondary Amines.

J Org Chem

November 2024

Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.

Aliphatic allylic amines are present in a large number of complex and pharmaceutically relevant molecules. The direct amination of allylic electrophiles serves as the most common method toward the preparation of these motifs. However, the use of feedstock reaction components (allyl alcohol and aliphatic amine) in these transformations remains a great challenge.

View Article and Find Full Text PDF

Nickel-Catalyzed Reductive Alkenylation of Enol Derivatives: A Versatile Tool for Alkene Construction.

Acc Chem Res

November 2024

State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.

Article Synopsis
  • - Ketone-to-alkene transformations are important in organic chemistry, and recent nickel-catalyzed reductive alkenylation reactions show promise for creating a variety of alkenes using different functional groups.
  • - The authors' research started with coupling α-chloroboronates, then expanded to include a range of radical-inactive compounds, leading to the development of new strategies for cross-selectivity in various chemical reactions.
  • - These advancements enable efficient synthesis of valuable products, including functionalized cycloalkenes and diverse alkenes, by broadening the types of enol derivatives used in the reactions, making the approach more accessible and practical.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!