Chlorpyrifos, a broad-spectrum organophosphorus insecticide, has been widely detected worldwide and is a potential neurotoxin and endocrine disruptor. Besides, chlorpyrifos has been proven that have a negative effect on soil microbes. In the present study, chlorpyrifos formulation (LORSBAN®, 45% emulsifiable concentrate) was applied in an agricultural field at the recommended dose (R dose, 270.0 and 337.5 g a.i. ha for wheat and maize respectively) and double recommended (DR) dose. Chlorpyrifos residue level and effect on soil microbes related to soil carbon and nitrogen cycle function were analyzed. Results showed that the half-lives of chlorpyrifos in wheat and maize field soil were 7.23-8.23 and 1.45-1.77 d, respectively. Application of chlorpyrifos at even DR dose did not result in unacceptable residual chlorpyrifos, where the final residual chlorpyrifos in wheat/maize (leaf, stem, and grain) was meet the requirement of the maximum residual limit (0.5 mg kg for wheat and 0.05 mg kg for maize) in China. Chlorpyrifos enhanced the activity of β-glucosidase by increasing the relative abundance of Sphingosinicella and promoted the carbon cycle in wheat field. The changes of cbbLR and cbbLG gene abundance also confirmed that chlorpyrifos could affect the import and export of soil carbon pool. The effect of chlorpyrifos on soil N cycle was determined by changes in the abundance of the bacterial genus Gemmatimonas, which is associated with denitrification. Further analysis of N-cycle functional genes and urease activity showed that chlorpyrifos inhibited nitrogen fixation in wheat field, but promoted nitrogen fixation in maize field. In general, bacterial abundance, urease, and AOA-amoA gene could be early warning markers of chlorpyrifos contamination. The results demonstrated the negative effects of chlorpyrifos on soil microbes especially on soil C and N cycle in actual agricultural field. It provides new insights about chlorpyrifos environmental pollution and its effect on soil ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.120908DOI Listing

Publication Analysis

Top Keywords

chlorpyrifos
16
soil microbes
16
chlorpyrifos soil
12
agricultural field
12
soil
10
effects chlorpyrifos
8
carbon nitrogen
8
nitrogen cycle
8
recommended dose
8
wheat maize
8

Similar Publications

Emerging organic contaminants (EOCs) are a growing concern for aquatic ecosystems, underscoring the need for advanced risk assessment methodologies. This study employed an integrated approach to evaluate the risks associated with 563 EOCs across 13 monitoring sites along the Sava River in Croatia. Sampling was conducted during the winter and spring months, spanning February to May.

View Article and Find Full Text PDF

Spatial occurrence of emerging contaminants in rivers and wastewater. Analysis of environmental and human risks.

Environ Toxicol Chem

January 2025

Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.

This study assesses the occurrence of emerging contaminants (ECs) from agricultural and livestock production activities along the Salado River (Santa Fe province, Argentina). Of the 23 ECs studied, 8 were detected and quantified in river and wastewater samples, including ciprofloxacin, enrofloxacin, chlorpyrifos-methyl, albendazole, fenbendazole, levamisole, diazepam, and thiamethoxam. In river samples, the highest concentrations corresponded to ciprofloxacin, chlorpyrifos-methyl, and enrofloxacin.

View Article and Find Full Text PDF

Maize Herbivore-Induced Volatiles Enhance Xenobiotic Detoxification in Larvae of and .

Plants (Basel)

December 2024

Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests and to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize ().

View Article and Find Full Text PDF

Background: The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides.

View Article and Find Full Text PDF

The Danjiangkou Reservoir is the largest artificial freshwater lake in Asia. This study investigated the spatiotemporal distribution of pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Danjiangkou Reservoir to assess the ecological and human health risks associated with these pollutants. Twenty-three sampling sites in the Danjiangkou Reservoir each collected 23 surface water samples and 23 sediment samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!