A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The deleterious effect of xylene-induced ear edema in rats: Protective role of dexketoprofen trometamol transdermal invasomes via inhibiting the oxidative stress/NF-κB/COX-2 pathway. | LitMetric

Pain and inflammation could have a negative impact on a patient's quality of life and performance, causing them to sleep less. Dexketoprofen trometamol (DKT) is a water-soluble, nonselective NSAIDs. Because DKT is quickly eliminated in the urine after oral delivery, its efficacy is limited and must be taken repeatedly throughout the day. The main ambition of this work is to develop and characterize the potential of invasomes to enhance the transdermal transport of DKT to achieve efficient anti-inflammatory and pain management. The optimum formulation (C1) showed the least %RE (53.29 ± 2.68 %), the highest %EE (86.51 ± 1.05 %), and spherical nanosized vesicles (211.9 ± 0.57 nm) with (PDI) of 0.353 ± 0.01 and (ZP) of -19.15 ± 2.45 mV. DKT flux and deposition in stratum corneum, epidermal, and dermal skin layers were significantly augmented by 2.6 and 3.51 folds, respectively, from the optimum invasomal gel formulation (C1-G) compared to DKT conventional gel (DKT-G). The anti-inflammatory activity of C1-G was evaluated using a model of xylene-induced ear edema in rats. Xylene exposure upregulated the ear expression of COX-2 level and MPO activity. Xylene also significantly increased the ear NF-κB p65, TNF-α, IL-Iβ, and MDA levels. Furthermore, xylene induced oxidative stress, as evidenced by a significant decrease in ear GSH and serum TAC levels. These impacts were drastically improved by applying C1-G compared to rats that received DKT-G and plain invasomal gel formulation (plain C1-G). The histopathological findings imparted substantiation to the biochemical and molecular investigations. Thereby, C1-G could be a promising transdermal drug delivery system to improve the anti-inflammatory and pain management of DKT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2022.122525DOI Listing

Publication Analysis

Top Keywords

xylene-induced ear
8
ear edema
8
edema rats
8
dexketoprofen trometamol
8
anti-inflammatory pain
8
pain management
8
invasomal gel
8
gel formulation
8
c1-g compared
8
dkt
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!