Benchmarking transcriptional host response signatures for infection diagnosis.

Cell Syst

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Pathology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA. Electronic address:

Published: December 2022

Identification of host transcriptional response signatures has emerged as a new paradigm for infection diagnosis. For clinical applications, signatures must robustly detect the pathogen of interest without cross-reacting with unintended conditions. To evaluate the performance of infectious disease signatures, we developed a framework that includes a compendium of 17,105 transcriptional profiles capturing infectious and non-infectious conditions and a standardized methodology to assess robustness and cross-reactivity. Applied to 30 published signatures of infection, the analysis showed that signatures were generally robust in detecting viral and bacterial infections in independent data. Asymptomatic and chronic infections were also detectable, albeit with decreased performance. However, many signatures were cross-reactive with unintended infections and aging. In general, we found robustness and cross-reactivity to be conflicting objectives, and we identified signature properties associated with this trade-off. The data compendium and evaluation framework developed here provide a foundation for the development of signatures for clinical application. A record of this paper's transparent peer review process is included in the supplemental information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768893PMC
http://dx.doi.org/10.1016/j.cels.2022.11.007DOI Listing

Publication Analysis

Top Keywords

signatures
8
response signatures
8
signatures infection
8
infection diagnosis
8
robustness cross-reactivity
8
benchmarking transcriptional
4
transcriptional host
4
host response
4
diagnosis identification
4
identification host
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!