AI Article Synopsis

Article Abstract

In this work, a novel surface-enhanced Raman scattering (SERS) sandwich strategy biosensing platform has been established for simultaneously detecting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). FeO@SiO-Au nanocomposites (NCs) with varying amounts of Au nanocrystals were prepared, and the effect of interparticle gaps on SERS activity was studied by finite-difference time-domain (FDTD) method. The optimal magnetic SERS-active substrates (FS-A5) were functionalized with the specific aptamers to act as capture probes. Meanwhile, graphene oxide-Au nanostars (GO-Au NSs) decorated with Raman reporters and aptamers were used as SERS tags. The loading density of Au NSs on GO was tuned to change the number of SERS active sites. In this proposal, E. coli and S. aureus were first captured by capture probes and then bound with SERS tags to form a sandwich-like structure, which caused enhanced electromagnetic field because of the dual enhancement strategy. Under optimal conditions, SERS platform could detect E. coli and S. aureus simultaneously, and the detection limit was as low as 10 cfu/mL. Our sandwich assay-based dual-enhanced SERS platform provides a new idea for simultaneously detecting multiple pathogens with high selectivity and sensitivity, and thus will have more hopeful prospects in the field of food safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.12.077DOI Listing

Publication Analysis

Top Keywords

capture probes
12
sers tags
12
sandwich strategy
8
escherichia coli
8
coli staphylococcus
8
staphylococcus aureus
8
probes graphene
8
graphene oxide-au
8
oxide-au nanostars
8
sers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!